LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **MATHEMATICS**

THIRD SEMESTER – NOVEMBER 2017

MT 3964 - FORMAL LANGUAGES AND AUTOMATA

Date: 15-11-2017				Dept. No.		Max. : 100 Marks			
Time: 01:00-04:00									
ANSWER ALL QUESTIONS									
I a) Construct a finite automaton to accept all strings over $\{0, 1\}$ ending with 00.							(5)		
b) Construct a finite automaton accepting all positive integers divisible by 5.							(5)		
c) i) If L is accepted NFA with ∈ - moves then show that L is accepted by NFA without ∈ - moves .									
ii) Enumerate the difference between DFA and NFA . [OR]							(10+5)		
d) i) Let r be a regular expression. Then prove that there exists an NFA with \in - moves that accepts L(r).									
ii) Let L be a set accepted by a nondeterministic finite automaton. Then prove that there exists a deterministic finite automaton that accepts L.							(9+6)		
II a) Prove that $L = \{a^p / p \text{ is a prime number}\}.$							(5)		
[OR]									
b) State and prove pumping lemma.							(5)		
c) i)Construct an NFA with \in - moves for the regular expression									
(0*1*+11)*+(1+101*)*. ii)Show that $(0*1*)*=(0+1)*$									
$11) \text{Snow that } (\mathbf{U}^* \mathbf{I}^*)^* = (\mathbf{U} + \mathbf{I})^* \tag{8 + 7}$									
d) Minimize the following automaton.									
		0	1						
	$\rightarrow A$	В	F						
	В	G	С						
	* C	А	С						
	D	C	G						
	E	H	F						
	F	C	G						
	G	G	E						
	П	G	C						
							(15)		
III a) Construct a grammar to generate the set of all positive three digit even integers.							(5)		
b) Prove that every regular language is a context free language.							(5)		

c i) Let G be a grammar $S \rightarrow aB/bA, A \rightarrow a/aS/bAA, B \rightarrow b/bS/aBB$. For the string <i>baaabbabba</i> find leftmost derivation, rightmost derivation and parse tree. ii)Construct a context-free grammar to generate $L = \{a^n b^{2n} / n \ge 1\}$ [OR] d Let G be the grammar with rules $S \rightarrow 0A0/1B1/BB, A \rightarrow C, B \rightarrow S/A, C \rightarrow S/ \in$.(10+5)
 i) Eliminate ∈ productions. ii)Eliminate unit productions. iii)Eliminate the useless symbols. iv)Write the grammar in CNF form. 	(15)
IV a) Define the different types of languages accepted by a pushdown automaton.	(5)
b) Construct a PDA for the grammar $S \rightarrow aSb/ab$ by empty stack.	(5)
 c) If a language L is accepted by a PDA 'A' by final state then prove that there exist a PDA 'B' accepts the same language L by empty stack. . [OR] 	(15)
d) Design a PDA to accepting $L = \{wcw^R / w \text{ is a string in } (0+1)^*\}$ by	
(i)Empty stack. (ii) Final state.	(7 + 8)
V a) Discuss about multiple tracks of a Turing Machine. [OR]	(5)
b) Is it possible that a Turing machine could be considered as a computer of functions from integers to integers? If yes, justify your answer.	(5)
c) Design a TM to accept the language $L = \{a^n b^n c^n / n \ge 1\}$.	(15)
[OR]	(15)
u) Design a Turing Machine to perform proper subtraction	(13)
