MT 3964-FORMAL LANGUAGES AND AUTOMATA

Date: 15-11-2017
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

ANSWER ALL QUESTIONS

I a) Construct a finite automaton to accept all strings over $\{0,1\}$ ending with 00 .
[OR]
b) Construct a finite automaton accepting all positive integers divisible by 5 .
c) i) If L is accepted NFA with \in - moves then show that L is accepted by NFA without \in - moves .
ii) Enumerate the difference between DFA and NFA
[OR]
d) i) Let r be a regular expression. Then prove that there exists an NFA with \in - moves that accepts $\mathrm{L}(\mathrm{r})$.
ii) Let L be a set accepted by a nondeterministic finite automaton. Then prove that there exists a deterministic finite automaton that accepts L.

II a) Prove that $L=\left\{a^{p} / p\right.$ is a prime number $\}$.
[OR]
b) State and prove pumping lemma.
c) i)Construct an NFA with \in-moves for the regular expression

$$
\left(0^{*} 1^{*}+11\right)^{*}+\left(1+101^{*}\right)^{*}
$$

ii)Show that $\left(0^{*} 1^{*}\right)^{*}=(0+1)^{*}$
d) Minimize the following automaton.

	0	1
$\rightarrow \mathrm{~A}$	B	F
B	G	C
$* \mathrm{C}$	A	C
D	C	G
E	H	F
F	C	G
G	G	E
H	G	C

III a) Construct a grammar to generate the set of all positive three digit even integers .
[OR]
b) Prove that every regular language is a context free language.
c i) Let G be a grammar $S \rightarrow a B / b A, A \rightarrow a / a S / b A A, B \rightarrow b / b S / a B B$. For the string baaabbabba find leftmost derivation, rightmost derivation and parse tree.
ii)Construct a context-free grammar to generate $L=\left\{a^{n} b^{2 n} / n \geq 1\right\}$
[OR]
d Let G be the grammar with rules $S \rightarrow 0 A 0 / 1 B 1 / B B, A \rightarrow C, B \rightarrow S / A, C \rightarrow S / \in$
i) Eliminate \in productions.
ii)Eliminate unit productions.
iii)Eliminate the useless symbols.
iv)Write the grammar in CNF form.

IV a) Define the different types of languages accepted by a pushdown automaton.
[OR]
b) Construct a PDA for the grammar $S \rightarrow a S b / a b$ by empty stack.
c) If a language L is accepted by a PDA 'A' by final state then prove that there exist a PDA ' B ' accepts the same language L by empty stack.
[OR]
d) Design a PDA to accepting $L=\left\{w c w^{R} / w\right.$ is a string in $\left.(0+1)^{*}\right\}$ by
(i)Empty stack.
(ii) Final state.

V a) Discuss about multiple tracks of a Turing Machine.
[OR]
b) Is it possible that a Turing machine could be considered as a computer of functions from integers to integers? If yes, justify your answer .
c) Design a TM to accept the language $L=\left\{a^{n} b^{n} c^{n} / n \geq 1\right\}$.
[OR]
d) Design a Turing Machine to perform proper subtraction

