B.Sc.DEGREE EXAMINATION - MATHEMATICS

FIFTHSEMESTER - NOVEMBER 2017
MT 5408- GRAPH THEORY

Date: 15-11-2017
Dept. No. \square
Max. : 100 Marks
Time: 09:00-12:00

PART - A

Answer ALL the questions

1. Define a complete bipartite graph with example.
2. Prove that $\delta \leq \frac{2 q}{p} \leq \Delta$.
3. Definr degree of any vertex of any graph with an example.
4. When a $v_{n}-v_{0}$ walk is said to be closed?
5. Define distance between any two vertices of a graph.
6. Define an Eulerian graph and give an example.
7. Prove that every Hamiltonian graph is 2 -connected.
8. Define a spanning tree with examples.
9. Define an eccentricity of a vertex v in a connected graph G.
10. Define chromatic number with an example.

PART - B

Answer any FIVE questions

11. Show that in a group of two or more people, there are always two with exactly same number of friends inside the room.
12. If Let G_{1} be a $\left(p_{1}, q_{1}\right)$ graph and G_{2} be a $\left(p_{2}, q_{2}\right)$ graph then prove that
(i) $G_{1}+G_{2}$ is a $\left(p_{1}+p_{2}, q_{1}+q_{2}+p_{1} p_{2}\right)$ graph.
(ii) $G_{1} \times G_{2}$ is a $\left(p_{1} p_{2}, q_{1} p_{2}+q_{2} p_{1}\right)$ graph.
13. Defineself complementary graph and prove that any self complementary graph has $4 n$ or $4 n+1$ vertices.
14. Let v be the vertex of a graph G, then prove that the following statement are equivalent.
(i) vis a cut vertex of G.
(ii) There exist partition of $G-\{v\}$ into U and W such that for each $u \in U$ and $w \in W$, the edge x is on every $u-w$ path.
(iii) There exist two vertices u, w distinct from v such that v is on every $u-$ w path
15. If G is a graph with $p \geq 3$ vertices and $\delta \geq^{p} / 2$, then prove that G is Hamiltonian.
16. State and prove five colour theorem for a planar graph.
17. If G is connected planar graph having V, E and F as the set of vertices, edges and faces respectively then, prove that $|V|-|E|+|F|=2$.
18. Prove that K_{5} and $K_{3,3}$ are non planar graphs.

PART - C

Answer any TWO questions

19.(a) Define connected graph and prove that a graph G with p vertices and $\delta \geq \frac{p-1}{2}$ is connected.
(b)The maximum number of edges among all p vertex graphs with no triangles is $\left[\frac{p^{2}}{4}\right]$.
20. (a) If G is not connected then prove that \bar{G} is connected.
(b) Prove that a graph G with atleast two vertices is bipartite iff all its cycle are of even length.
21.(a) Prove that the following statements are equivalent for a connected graph G
(i) G is Eulerian.
(ii) Every point of G has even degree.
(iii)The set of edges of G can be partitioned into cycles.
(b) If G is a graph in which the degree of every vertex is atleast two then prove that G contains a cycle.
22.(a) Let G be a (p, q) graph then prove that the following statements are equivalent
(i) G is a tree.
(ii) Every two points of Gare connected by a unique path.
(iii) G is connected and $p=q+1$.
(iv) G is acyclic and $p=q+1$.
(b) If G is a connected (p, q) planar graph with no triangle and $p \geq 3$ then prove that $q \leq 2 p-4$

