B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIFTH SEMESTER - NOVEMBER 2017
MT 5409-NUMERICAL METHODS

Date: 15-11-2017
Dept. No. \square Max. : 100 Marks
Time: 09:00-12:00

Part A: Answer all the questions and each question carries 2 marks.
$10 \times 2=20$

1. Solve the following equations using Crammer's rule: $2 x-y=5$ and $3 x+2 y=-3$.
2. Show that $\sqrt{12}=3.4641$ using Newton-Raphson method.
3. Find the initial approximate root of $\mathrm{xe}^{\mathrm{x}}=3$ when you try solve by any known method.
4. Given that $f(0)=8, f(1)=68$ and $f(5)=123$. Using Newton's interpolation formula, find $f(2)$.
5. Choosing suitable origin, construct the difference table for the following data:
$y_{21}=18.4708 ; \mathrm{y}_{25}=17.8144 ; \mathrm{y}_{29}=17.1070 ; \mathrm{y}_{33}=16.3432$ and $\mathrm{y}_{37}=15.5154$.
6. State the formulae for Euler's method and Modified Euler's method to solve ordinary differential equations.
7. What should one do to get a refined answer while using Trapezoidal rule.
8. When will you use Simpson's one by third and Simpson's three by eighth rule.
9. Using Bessel's formula find y_{25} given that $\mathrm{y}_{20}=2854 ; \mathrm{y}_{24}=3162 ; \mathrm{y}_{28}=3544$ and $\quad \mathrm{y}_{32}=3992$.
10. A curve is drawn to pass through the points given by the following table. Estimate the area bounded by the curve, the x -axis and the lines $\mathrm{x}=1$ and $\mathrm{x}=4$.

x	1	1.5	2	2.5	3	3.5	4
y	2	2.4	2.7	2.8	3	2.6	2.1

Part B: Answer any FIVE questions and each question carries 8 marks. ($5 \times 8=40$)
11. Find the real root of the equation $x^{3}-x^{2}-1=0$ correct upto 3 decimal places by using iteration method.
12. Show that the root of $\mathrm{xe}^{\mathrm{x}}=3$ by regula falsi method is $\mathrm{x}=1.049$ approximately.
13. Find $f(7.5)$ using a suitable method from the values given in the following table:

X	1	2	3	4	5	6	7	8
$\mathrm{f}(\mathrm{x})$	1	8	2	6	12	21	34	512
			7	4	5	6	3	

14. Given $\log _{10} 654=2.8156 ; \log _{10} 658=2.8182 ; \log _{10} 659=2.8189$ and $\log _{10} 661=2.8202$. Find \log ${ }_{10} 656$ using Lagrange's interpolation formula.
15. Given that the square root of the following numbers are $12500,12510,12520,12530$ are $111.803399,111.848111,111.892806$ and 111.937483 respectively. Using any suitable formula show that square root of 12516 is 111.874930 .
16. Using any central difference formula find y_{28} given that $\mathrm{y}_{20}=49225 ; \mathrm{y}_{25}=48316, \quad \mathrm{y}_{30}=47236$; $\mathrm{y}_{35}=45926$ and $\mathrm{y}_{40}=44306$.
17. Given that $\frac{d y}{d x}=\log (x+y)$, with the initial condition that $\mathrm{y}=1$ when $\mathrm{x}=0$, find y for $\mathrm{x}=0.2$.
18. Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by using Simpson's one by third rule.

Part C: Answer any TWO questions only. Each question carries 20 marks. (2x 20=40)

19. Find the root of the equation $\mathrm{x}^{3}-\mathrm{x}-11=0$ correct to 4 decimal places using bisection method.
20.1) Solve the system of equations $3 x+y-z=3 ; 2 x-8 y+z=-5$ and $x-2 y+9 z=8$ using Gauss elimination method.
2) Solve by Gauss - Seidel method, the following system of equations $27 x+6 y-$ $\mathrm{z}=85 ; 6 \mathrm{x}+15 \mathrm{y}+2 \mathrm{z}=72$ and $\mathrm{x}+\mathrm{y}+54 \mathrm{z}=110$
21. From the following table, find the value of $\log 337.5$ by Gauss, Stirling, Bessel and Everett formulae.

x	310	320	330	340	350	360
$\log _{10} \mathrm{x}$	2.4913617	2.5051500	2.5185139	2.5314789	2.5440680	2.5563025

22. Use Runge Kutta method to approximate y, when $x=0.1$ and $x=0.2$ given that $x=0$ and

$$
\mathrm{y}=1, \text { and } \frac{d y}{d x}=x+y .
$$

