1

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc.DEGREE EXAMINATION –**MATHEMATICS**

FIFTH SEMESTER – NOVEMBER 2017

MT 5509- ALGEBRAIC STRUCTURE - II

PART-A

Date: 06-11-2017 Time: 09:00-12:00 Dept. No.

Max.: 100 Marks

1. Define a vector space V over a field F.

- 2. If V is a vector space over a field F, show that (-a)v = a(-v) = -(av) for $a \in F, v \in V$.
- 3. Define a basis of a vector space.
- 4. Define homomorphism of a vector space into itself.
- 5. Define inner product space.

ANSWER ALL THE QUESTIONS:

- 6. Prove that the product of two invertible linear transformations on V is itself an invertible linear transformations on V.
- 7. Show that the matrix $A = \begin{pmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{pmatrix}$ is orthogonal.
- 8. If A and B are Hermitian, show that AB BA is Skew- Hermitian.
- 9. Define symmetric matrix.
- 10. If $T^*T = I$, then show that T is unitary.

PART - B

ANSWER ANY FIVE QUESTIONS:

- 11. Prove that the intersection of two subspaces of a vector space V is a subspace of V.
- 12. If S and T are subsets of a vector space V over F, then prove that
 - $(i) \qquad S \text{ is a subspace of V if and only if } L(S) \subseteq S.$
 - (ii) $S \subseteq T$ implies that $L(S) \subseteq L(T)$.
 - (iii) L(L(S)) = L(S).
- 13. If V is a vector space of finite dimension, and is the direct sum of its subspaces U and W, then prove that dimV = dimU + dimW.
- 14. State and prove Schwarz inequality.
- 15. If $T \in A(V)$ is singular if and only if there exists an element $v \neq 0$ in V such that T(v) = 0.

16. Let $V = R^3$, and let $T \in A(V)$ be defined by $a_2, -a_1 + 2a_2 + 4a_3$. What is the matrix of T relative to the basis $v_1 = (1,0,1), v_2 = (-1,2,1), v_3 = (2,1,1)$?

(10 X 2 = 20)

(5 X 8 = 40)

17. Solve the system of linear equations

 $x_1 + 2x_2 + 2x_3 = 5$, $x_1 - 3x_2 + 2x_3 = -5$, $2x_1 - x_2 + x_3 = -3$.

over the rational field by working only with the augmented matrix of the system.

18. If $\langle T(v), T(v) \rangle = \langle v, v \rangle$ for all v inV, then prove that T is unitary.

PART – C

ANSWER ANY TWO QUESTIONS:

(2 X 20 = 40)

(10+10)

19. (i) The vector space V over F is a direct sum of two of its subspaces W_1 and W_2 if and only if

 $V = W_1 \oplus W_2$ and $W_1 \cap W_2 = (0)$.

(ii) Express the vector (1, -2, 5) as a linear combination of the vectors

(1,1,1), (1,2,3), and (2,-1,1) in \mathbb{R}^3 , where R is the field of real numbers.

20. If V is a vector space of finite dimension and W is a subspace of V, then

prove that $dim \frac{V}{W} = dim V - dim W$.

21. Prove that every finite - dimensional inner product space V has an orthonormal set as a basis.

22. If $T \in A(V)$, then $T^* \in A(V)$. Moreover,

(i)
$$(S+T)^* = S^* + T$$

(ii)
$$(ST)^* = T^*S^*$$

(iii) $(\lambda T)^* = \overline{\lambda} T^*$

(iv) $(T^*)^* = T$.
