LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

Date: 06-11-2017
Time: 09:00-12:00

B.Sc.DEGREE EXAMINATION -MATHEMATICS
 FIFTH SEMESTER - NOVEMBER 2017
 MT 5509- ALGEBRAIC STRUCTURE - II

Dept. No. \square Max. : 100 Marks

PART -A

ANSWER ALL THE QUESTIONS:
($10 \times 2=20$)

1. Define a vector space V over a field F .
2. If V is a vector space over a field F , show that $(-a) v=a(-v)=-(a v)$ for $a \in F, v \in V$.
3. Define a basis of a vector space.
4. Define homomorphism of a vector space into itself.
5. Define inner product space.
6. Prove that the product of two invertible linear transformations on V is itself an invertible linear transformations on V.
7. Show that the matrix $\mathrm{A}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ is orthogonal.
8. If A and B are Hermitian, show that $\mathrm{AB}-\mathrm{BA}$ is Skew- Hermitian.
9. Define symmetric matrix.

10 . If $T^{*} \mathrm{~T}=\mathrm{I}$, then show that T is unitary.

PART - B

ANSWER ANY FIVE QUESTIONS:

11. Prove that the intersection of two subspaces of a vector space V is a subspace of V .
12. If S and T are subsets of a vector space V over F, then prove that
(i) $\quad \mathrm{S}$ is a subspace of V if and only if $\mathrm{L}(\mathrm{S}) \subseteq \mathrm{S}$.
(ii) $\mathrm{S} \subseteq \mathrm{T}$ implies that $\mathrm{L}(\mathrm{S}) \subseteq \mathrm{L}(\mathrm{T})$.
(iii) $\mathrm{L}(\mathrm{L}(\mathrm{S}))=\mathrm{L}(\mathrm{S})$.
13. If V is a vector space of finite dimension, and is the direct sum of its subspaces U and W , then prove that $\operatorname{dim} V=\operatorname{dim} U+\operatorname{dim} W$.
14. State and prove Schwarz inequality.
15. If $T \in A(V)$ is singular if and only if there exists an element $v \neq 0$ in V such that $T(v)=0$.
16. Let $V=R^{3}$, and let $T \in A(V)$ be defined by

$$
T\left(a_{1}, a_{2}, a_{3}\right)=\left(3 a_{1}+a_{3},-2 a_{1}+\right.
$$ $\left.a_{2},-a_{1}+2 a_{2}+4 a_{3}\right)$. What is the matrix of T relative to the basis $v_{1}=(1,0,1), v_{2}=$ $(-1,2,1), v_{3}=(2,1,1)$?

17. Solve the system of linear equations
$x_{1}+2 x_{2}+2 x_{3}=5, \quad x_{1}-3 x_{2}+2 x_{3}=-5,2 x_{1}-x_{2}+x_{3}=-3$.
over the rational field by working only with the augmented matrix of the system.
18. If $\langle T(v), T(v)\rangle=\langle v, v\rangle$ for all $v \operatorname{in} V$, then prove that T is unitary.

PART - C

ANSWER ANY TWO QUESTIONS:

19. (i) The vector space V over F is a direct sum of two of its subspaces $\quad W_{1}$ and W_{2} if and only if $V=W_{1} \oplus W_{2}$ and $W_{1} \cap W_{2}=(0)$.
(ii) Express the vector $(1,-2,5)$ as a linear combination of the vectors $(1,1,1),(1,2,3)$, and $(2,-1,1)$ in R^{3}, where R is the field of real numbers.
20. If V is a vector space of finite dimension and W is a subspace of V, then prove that $\operatorname{dim} \frac{V}{W}=\operatorname{dim} V-\operatorname{dim} W$.
21. Prove that every finite - dimensional inner product space V has an orthonormal set as a basis.
22. If $T \in A(V)$, then $T^{*} \in A(V)$. Moreover,
(i) $(S+T)^{*}=S^{*}+T^{*}$
(ii) $(S T)^{*}=T^{*} S^{*}$
(iii) $(\lambda T)^{*}=\bar{\lambda} T^{*}$
(iv) $\quad\left(T^{*}\right)^{*}=T$.
