LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc.DEGREE EXAMINATION - MATHEMATICS

FIFTH SEMESTER - NOVEMBER 2018
16UMT5MC03- LINEAR ALGEBRA

Date: 01-11-2018
Dept. No. \qquad

PART A

ANSWER ALL THE QUESTIONS
(10 $* 2$ = 20marks)

1. Define a vector space over a field F .
2. Determine whether $T: R^{2} \rightarrow R^{3}$ defined by $T(a, b)=(a+1,2 b, a+b)$ is a vector space homomorphism or not.
3. Define inner product space.
4. Let R^{3} be the inner product space over R under the standard inner product. Find the norm of $(3,0,4)$.
5. If $T \in A(V)$ and $\lambda \in F$ and λ is a characteristic root of T then prove that $\lambda I-T$ is singular.
6. Define singular and regular linear transformation.
7. Define matrix of a linear transform.
8. Define similar matrices.
9. Define unitary linear transformation.
10. If $T \in A(V)$ is Hermitian, then prove that all its characteristic roots are real.

PART B

ANSWER ANY FIVE QUESTIONS

$$
(5 * 8=40 \mathrm{marks})
$$

11. If V is a vector space over F then show that
i) $\alpha 0=0$ for $\alpha \in F$
ii) $(-\alpha) v=-(\alpha v)$ for $\alpha \in F, v \in V$.
iii) If $v \neq 0$, then $\alpha v=0$ implies that $\alpha=0$.
12. If v_{1}, \ldots, v_{n} is a basis of V over F and if w_{1}, \ldots, w_{m} in V are linearly independent over F then prove that $m \leq n$.
13. State and prove Schwartz inequality.
14. If V is finite-dimensional over F then prove that $T \in A(V)$ is singular if and only if there exists a $v \neq 0$ in V such that $v T=0$.
15. If $\lambda \in F$ is a characteristic root of $T \in A(V)$, then prove that for any polynomial $q(x) \in F[x], q(\lambda)$ is a characteristic root of $q(T)$.
16. If V is n-dimensional over F and if $T \in A(V)$ has all its characteristic roots in F then prove that T satisfies a polynomial of degree n over F.
17. If $T \in A(V)$ then prove that $T^{*} \in A(V)$, also prove that i) $\left(T^{*}\right)^{*}=T$;
ii) $(S+T)^{*}=S^{*}+T^{*}$;
iii) $(\lambda S)^{*}=\bar{\lambda} S^{*}$;
iv) $(S T)^{*}=T^{*} S^{*}$;
for all $S, T \in A(V)$ and all $\lambda \in F$.
18. If λ is a characteristic root of the normal transformation N and if $v N=\lambda v$,then prove that $v N^{*}=\bar{\lambda} v$.

PART C

ANSWER ANY TWO QUESTIONS

$$
(2 * 20=40)
$$

19. a) If V is finite-dimensional and if W is a subspace of V, then prove that W is finitedimensional, $\operatorname{dim} W \leq \operatorname{dim} V$ and $\operatorname{dim} V / W=\operatorname{dim} V-\operatorname{dim} W$.
b) If V and W are of dimensions m and n, respectively, over F, then prove that $\operatorname{Hom}(V, W)$ is of dimension $m n$ over F.
20. a) State and prove Gram-Schmidt orthonormalization process.
b) If V a finite-dimensional inner product space is and if W a subspace of is V then prove that $V=W+W^{\perp} .(\mathbf{1 5 + 5})$
21. a) If V is finite-dimensional over F, then prove that $T \in A(V)$ is regular if and only if maps V onto V.
b) If $\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}$ in F are distinct characteristic roots of $T \in A(V)$ and if $v_{1}, v_{2}, \ldots v_{k}$ are characteristic vectors of T belonging to $\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}$, respectively then prove that $v_{1}, v_{2}, \ldots v_{k}$ are linearly independent over F. (10+10)
22. a) If V is n-dimensional over F, and if $T \in A(V)$ has the matrix $m_{1}(T)$ in the basis $v_{1}, \ldots v_{n}$ and the matrix $m_{2}(T)$ in the basisand $w_{1}, \ldots w_{n}$ of V over F, then prove that there is an element C in F_{n} such that $m_{2}(T)=C m_{1}(T) C^{-1}$.
b) If V is finite-dimensional over F, then for $T, S \in A(V)$ prove that
i) $r(S T) \leq r(T)$
ii) $r(T S) \leq r(T)$
iii) $r(S T)=r(T S)=r(T)$ for S is regular in $A(V)$.
