LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION – **MATHEMATICS**

FIFTH SEMESTER – **NOVEMBER 2018**

16UMT5MC03– LINEAR ALGEBRA

Date: 01-11-2018 Time: 09:00-12:00 Dept. No.

Max.: 100 Marks

PART A

ANSWER ALL THE QUESTIONS

- 1. Define a vector space over a field F.
- 2. Determine whether $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(a, b) = (a + 1, 2b, a + b) is a vector space homomorphism or not.
- 3. Define inner product space.
- 4. Let R^{3} be the inner product space over R under the standard inner product. Find the norm of (3,0,4).
- 5. If $T \in A(V)$ and $\lambda \in F$ and λ is a characteristic root of T then prove that $\lambda I T$ is singular.
- 6. Define singular and regular linear transformation.
- 7. Define matrix of a linear transform.
- 8. Define similar matrices.
- 9. Define unitary linear transformation.
- 10. If $T \in A(V)$ is Hermitian, then prove that all its characteristic roots are real.

PART B

(5 * 8 = 40*marks*)

(10 * 2 = 20 marks)

- 11. If V is a vector space over F then show that
 - i) $\alpha 0 = 0$ for $\alpha \in F$

ANSWER ANY FIVE QUESTIONS

- ii) $(-\alpha)v = -(\alpha v)$ for $\alpha \in F, v \in V$.
- iii) If $v \neq 0$, then $\alpha v = 0$ implies that $\alpha = 0$.
- 12. If $v_1, ..., v_n$ is a basis of V over F and if $w_1, ..., w_m$ in Vare linearly independent over F then prove that $m \le n$.
- 13. State and prove Schwartz inequality.
- 14. If V is finite-dimensional over F then prove that $T \in A(V)$ is singular if and only if there exists a

 $v \neq 0$ in V such that vT = 0.

- 15. If $\lambda \in F$ is a characteristic root of $T \in A(V)$, then prove that for any polynomial $q(x) \in F[x]$, $q(\lambda)$ is a characteristic root of q(T).
- 16. If V is n –dimensional over F and if $T \in A(V)$ has all its characteristic roots in F then prove that T satisfies a polynomial of degree n over F.
- 17. If $T \in A(V)$ then prove that $T^* \in A(V)$, also prove that

i)
$$(T^*)^* = T;$$

ii) $(S + T)^* = S^* +$
iii) $(\lambda S)^* = \overline{\lambda}S^*;$

iv)
$$(ST)^* = T^*S^*$$
;

for all $S, T \in A(V)$ and all $\lambda \in F$.

 $+ T^{*};$

18. If λ is a characteristic root of the normal transformation N and if $vN = \lambda v$, then prove that $vN^* = \overline{\lambda}v$.

PART C

(2 * 20 = 40)

ANSWER ANY TWO QUESTIONS

- 19. a) If *V* is finite-dimensional and if *W* is a subspace of *V*, then prove that *W* is finitedimensional, $dimW \le dimV$ and $\dim \frac{V}{W} = \dim V - \dim W$.
 - b) If V and W are of dimensions mand n, respectively, over F, then prove that Hom(V, W) is of dimension mn over F. (10+10)

20. a) State and prove Gram-Schmidt orthonormalization process.

- **b**) If *V* a finite-dimensional inner product space is and if *W* a subspace of is *V* then prove that $V = W + W^{\perp}$.(15+5)
- 21. a) If V is finite-dimensional over F, then prove that T ∈ A(V) is regular if and only if maps V onto V.
 b) If λ₁, λ₂, ... λ_k in F are distinct characteristic roots of T ∈ A(V) and if v₁, v₂, ... v_k are characteristic vectors of T belonging toλ₁, λ₂, ... λ_k, respectively then prove that v₁, v₂, ... v_k are linearly independent over F. (10+10)
 - 22. a) If *V* is *n*-dimensional over *F*, and if $T \in A(V)$ has the matrix $m_1(T)$ in the basis $v_1, ..., v_n$ and the matrix $m_2(T)$ in the basisand $w_1, ..., w_n$ of *V* over *F*, then prove that there is an element *C* in F_n such that $m_2(T) = Cm_1(T)C^{-1}$.
 - b) If *V* is finite-dimensional over *F*, then for $T, S \in A(V)$ prove that
 - i) $r(ST) \leq r(T)$
 - ii) $r(TS) \le r(T)$
 - iii) r(ST) = r(TS) = r(T) for S is regular in A(V). (10+10)