LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIFTH SEMESTER - NOVEMBER 2019
16/17UMT5MC03 - LINEAR ALGEBRA

Date: 02-11-2019
Dept. No. \square Max. : 100 Marks

PART-A

Answer All Questions

($10 \times 2=20$)

1. If V is a vector space over F, prove that
(i) $(-\alpha) v=-(\alpha v)$.
(ii) $0 v=0$ for $\alpha \in F$ and $v \in V$.
2. If F is the field of Real numbers, prove that the vectors $(1,1,0,0),(0,1,-1,0),(0,0,0,3)$
in $F^{(4)}$ are linearly independent.
3. In an inner product space V over F, show that $\|\alpha u\|=|\alpha|\|u\|$ for $\alpha \in F$ and $u \in V$.
4. Define norm of a vector in an inner product space.
5. Show that $T: F^{n} \rightarrow F$ given by $T\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}\right)=\alpha_{1}$ is a linear transformation.
6. Define rank of a linear transformation.
7. Define characteristic root of a linear transformation.
8. Define invariant subspace.
9. Examine whether the matrix $\left(\begin{array}{cc}0 & -a+i b \\ a+i b & 0\end{array}\right)$ is skew Hermitian or not.
10. When is a linear transformation said to be unitary?

PART- B

Answer Any FIVE Questions $(5 \times 8=40)$
11. Show that $V=F^{(n)}$ where F is field, is a vector space over F.
12. Let S and T be subspaces of V. Prove that
(a) $L(S)$ is a subspace of V .
(b) $L(S \cup T)=L(S)+L(T)$
13. Write down Schwarz inequality and establish the same.
14. If V is finite dimensional over F, prove that $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not zero.
15. If $\lambda_{1}, \lambda_{2} \ldots \lambda_{\mathrm{k}}$ in F are distinct characteristic roots of $T \in A(V)$ and if $v_{1}, \nu_{2} \ldots, \nu_{k}$ are characteristic vectors of T belonging to $\lambda_{1}, \lambda_{2} \ldots \lambda_{\mathrm{k}}$ respectively. Prove that $v_{1}, v_{2} \ldots, v_{k}$ are linearly independent over F.
16. If F is a field, V the set of polynomials in x of degree $n-1$ or less over F and D an operator on V is defined by $\left(\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+\ldots+\beta_{n-1} x^{n-1}\right) D=\beta_{1}+2 \beta_{2} x+3 \beta_{3} x^{2}+\ldots+(n-1) \beta_{n-1} x^{n-2}$. Find a matrix of D in the basis $\left\{1, x, x^{2}, x^{3} \ldots, x^{n-1}\right\}$.
17. If $T \in A(V)$ is such that $(v T, v)=0$ for all $v \in V$, prove that $T=0$.
18. (a) If $T \in A(V)$ is Hermitian then prove that all its characteristic roots are real.
(b) Prove that $T \in A(V)$ is unitary if and only if $T T^{*}=1$.

PART- C

Answer any TWO Questions

$(\mathbf{2} \times 20=40)$
19. (a) If V is finite dimensional and if W is a subspace of V, prove that V is finite dimensional, $\operatorname{dim} W \leq \operatorname{dim} V$ and $\operatorname{dim} V / W=\operatorname{dim} V-\operatorname{dim} W$.
(b) State and prove Gram Schmidst orthogonalisation process.
(10+10)
20. (a) If A is an algebra with unit element over F, prove that A is isomorphic to a subalgebra of $A(V)$ for some vector space V over F.
(b) If V is finite dimensional over F, prove that $T \in A(V)$ is regular if and only if T maps V onto V.
21. (a) If V is n-dimensional over F and if $T \in A(V)$ has the matrix $m_{1}(T)$ in the basis $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ and the matrix $m_{2}(T)$ in the basis $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$ of V over F , prove that there is an element $C \in F_{n}$ such that $m_{2}(T)$ $=C m_{1}(T) C^{-1}$.
(b) If V is n-dimensional over F and if $T \in A(V)$ has all its characteristic roots in F, prove that T satisfies a polynomial of degree n over F.
22.(a) Prove that the linear transformation T on V is unitary if and only if it takes an orthonormal basis of V into an orthonormal basis of V.
(b) If $T \in A(V)$, prove that $T^{*} \in A(V)$. Also prove that for all $S, T \in A(V)$ and $\lambda \in F$,
(i) $\left(T^{*}\right)^{*}=T$
(ii) $(S+T)^{*}=S^{*}+T^{*}$
(iii) $(\lambda S)^{*}=\bar{\lambda} S^{*}$
(iv) $(S T)^{*}=T^{*} S^{*}$.
(10+10)

