LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
 B.Sc. DEGREE EXAMINATION - MATHEMATICS
 FIRST SEMESTER - NOVEMBER 2019

16/17/18UMT1MC01 - ALGEBRA AND CALCULUS - I

Date: 30-10-2019
Dept. No. \square Max. : 100 Marks
Time: 09:00-12:00

PART - A

Answer ALL the questions.
($10 \times 2=20$)

1. Find the nth derivative of $e^{a x}$.
2. Find the subtangent and subnormal to the curve $y^{2}=4 a x$ at any point.
3. Write the necessary conditions for the existence of a maxima or a minima of $f(x, y)$ at $x=a$ and $y=b$.
4. When is a point said to be a saddle point?
5. Write the formula for radius of curvature in polar coordinates.
6. Define evolute of the curve.
7. If α, β, γ are the roots of the equation $x^{3}+p x^{2}+q x+r=0$, find the value of $\sum \alpha^{2}$.
8. Define reciprocal equation.
9. State Descartes' rule of signs.
10. Find the number of positive roots in the equation $x^{7}-3 x^{4}+2 x^{3}-1=0$.

PART - B

Answer any FIVE questions
$(5 \times 8=40)$
11. If $y=x^{2} e^{x}$, Show that $y_{n}=\frac{1}{2} n(n-1) y_{2}-n(n-2) y_{1}+\frac{1}{2}(n-1)(n-2) y$.
12. Find the slope of the tangent to the curve $r=a(1-\cos \theta)$ at $\theta=\frac{\pi}{2}$.
13. Find the maximum and minimum value of $4 x^{2}+6 x y+9 y^{2}-8 x-24 y+4$.
14. Find the radius of curvature of the curve $x y^{2}=a^{3}-x^{3}$ at the point $(a, 0)$.
15. Find $p-r$ equation of the parabola $\frac{2 a}{r}=1-\cos \theta$ with respect to the focus as pole.
16. Solve the equation $x^{4}+2 x^{3}-5 x^{2}+6 x+2=0$, given that $1+\sqrt{-1}$ is a root of it.
17. Solve $6 x^{5}+11 x^{4}-33 x^{3}-33 x^{2}+11 x+6=0$.
18. Solve $x^{3}-27 x+54=0$ by Cardon's method.

PART - C

Answer any TWO questions.
($\mathbf{2} \times 20=40$)
19. (a) Find the $n^{\text {th }}$ differential coefficient of $x^{2} \sin 5 x$.
(b) Find the angle of intersection of curves $r=a(1+\cos \theta)$ and $r=b(1-\cos \theta)$.
20. (a) Using Lagrange's Multipliers, find the maximum value of $f(x, y, z)=x+y+z$ subject to $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$.
(b) Find the asymptotes of $x^{3}+2 x^{2} y+x y^{2}-x^{2}-x y+2=0$.
21. Find the evolute of the parabola $y^{2}=4 a x$ where $x=a t^{2}$ and $y=2 a t$
22. (a) If one of the roots of the equation $3 x^{5}-4 x^{4}-42 x^{3}+56 x^{2}+27 x-36=0$ is $\sqrt{2}+\sqrt{5}$, find the other root.
(b) Find the positive root of the equation $x^{3}+6 x-2=0$ by Horner's method correct to two decimal places.

