LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2019
16/17/18UMT1MCO2 - ANALYTICAL GEOMETRY OF 2D, TRIG. MATRICES

Date: 01-11-2019
Dept. No. \square Max. : 100 Marks
Time: 09:00-12:00

PART- A

Answer ALL the questions
$(10 \times 2=20)$

1. Write down the expansion of $\tan \theta$ in ascending powers of θ up to θ^{5}.
2. If $x=\cos \theta+i \sin \theta$, then find $x^{2}-\frac{1}{x^{2}}$.
3. Show that $\cosh ^{2} x-\sinh ^{2} x=1$.
4. Find the general value of $\log _{\mathrm{e}}(x+i y)$.
5. Write the characteristic equation of a matrix.
6. State Cayley Hamilton theorem.
7. Find the poles of the line $2 x+y+5=0$ with respect to the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.
8. Find the equation of the ellipse whose vertices are $(2,-2),(2,4)$ and eccentricity is $\frac{1}{3}$.
9. What is the equation of straight line and a circle in polar form.
10. Find the equation of the hyperbola whose eccentricity is $\sqrt{2}$ and the distance between foci is 16 , taking transverse and conjugate axes of the hyperbola as x and y axes respectively.

PART- B

Answer any FIVE questions
$(5 \times 8=40)$
11. Express $\frac{\sin 6 \theta}{\sin \theta}$ in terms of $\cos \theta$.
12. Evaluate $\operatorname{Lt}_{x \rightarrow \pi / 2} \frac{\sin x+\cos 2 x}{\cos ^{2} x}$.
13. Prove that $\tanh ^{-1} x=\frac{1}{2} \log _{e}\left(\frac{1+x}{1-x}\right)$.
14. If $\tan (x+i y)=u+i v$, prove that $\frac{u}{v}=\frac{\sin 2 x}{\sinh 2 y}$.
15. Find the value of $A^{3}+2 A^{2}-A$ if $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right)$.
16. Find the eigenvalues and eigen vectors of $A=\left(\begin{array}{cc}-2 & 2 \\ 2 & 1\end{array}\right)$.
17. Find the locus of the poles of chords of a parabola subtending a right angle at vertex.
18. Find the asymptotes of the hyperbola $3 x^{2}+10 x y+8 y^{2}+14 x+22 y+7=0$.

PART- C

Answer any TWO questions
19. (a) Expand $\sin ^{3} \theta \cos ^{5} \theta$ in a series of multiples of θ.
(b) Evaluate $\underset{\theta \rightarrow 0}{L t} \frac{\tan \theta+\sec \theta-1}{\tan \theta-\sec \theta+1}$.
20. (a) If $\cos (x+i y)=\cos \theta+i \sin \theta$, prove that $\cos 2 x+\cosh 2 y=2$.
(b) Separate the real and imaginary parts of $\tan ^{-1}(x+i y)$.
(10+10)
21. Diagonalise the matrix $\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & 1 & 2 \\ 2 & 2 & 0\end{array}\right)$.
22. (a) Trace the curve $\frac{2}{r}=1+\cos \theta+\sin \theta$.
(b) Show that the conjugate lines through a focus of an ellipse are at right angles.

