LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **MATHEMATICS**

THIRD SEMESTER – NOVEMBER 2019

18PMT3MC02 – FUZZY SETS AND APPLICATIONS

Date: 31-10-2019 Time: 09:00-12:00

Answer ALL Questions

1. a) Define Fuzzy subsets and give an example.

OR

Dept. No.

b) If the fuzzy subsets A and B represents real numbers very near to 5 and 10 respectively, find the fuzzy subset of real numbers very near to 5 and 10. (5)

c) Find $R_{02} \circ R_{02}$ using max-min composition.

/0 /0					
R_{\downarrow}		$\frac{R}{\sqrt{2}}$		$\frac{n}{\sqrt{4}}$	$\begin{bmatrix} n \\ n \\ \hline y_{15} \end{bmatrix}$
30 x 1	0.1	0.2	0	1	0.7
κ ₁ x;2	0.3	0.5	0	0.2	1
$\frac{1}{x^2}$	0.8	0	1	0.4	0.3

ס				
$R_{0/2}$	81	82	83	84
21	0.9	0	0.3	0.4
241 272 272	0.2	1	0.8	0
273 273 273	0.8	0	0.7	1
22 223 224	0.4	0.2	0.3	0
23 24 24 25	0	1	0	0.8

(15)

Max.: 100 Marks

OR

- d) Let $\underset{0}{R} \subset E \times E$ then prove that $\forall (x, y) \in E \times E$; $\mu_{R^{k}(x, y) = l_{k^{*}}(x, y)}$ where $l_{k^{*}}(x, y)$ is the strongest path existing from x to y of length k. (8) e) Let $p_{i}, m_{i}, n_{i} \in R^{+}, i = 1, 2 \dots k$, then prove that $\sqrt{\sum_{i=1}^{k} p_{i}^{2}} \leq \sqrt{\sum_{i=1}^{k} m_{i}^{2}} + \sqrt{\sum_{i=1}^{k} n_{i}^{2}}$, where $p_{i} \leq m_{i} + n_{i}, i = 1, 2 \dots k$. (7)
- 2. a) Explain in detail the concept of conditioned fuzzy subsets with an example.

OR

- b) Explain normal projection with an example.
- c) Find $A \oplus B$ for

	x1	x2	x 3	$\overline{x4}$	<i>x</i> 5	<i>x</i> 6	x7
А	0.7	0.2	0	0.6	0.5	1	0
В	0.2	0	0	0.6	0.8	0.4	1

(5)

	 d) When fuzzy relations are converted to crisp relations, what do you do with the bounda an example. OR 	ry values?. Give (7)		
	e) Using suitable example, show that Max-Min composition is associative.f) Define algebraic product and algebraic sum of two fuzzy relations with an example.	(7)		
3.	a) Consider the relation $R_{0/2}$ given with the resemblance function $\mu_{R_{0/2}}(x, y) = \frac{1}{1+ x-y }$, for	(8) all $x, y \in N$. Is		
	this relation a resemblance relation?.			
	OR			
	b) Define fuzzy ordinal relation and give an example.	(5)		
	c) Explain the following fuzzy relation of (i) preorder (ii) semi-preorder (iii) perfect anti-	symmetric and		
	(iv) similitude, each with an example.	(8)		
	d) Define fuzzy equivalence relation and give an example with verification of properties.			
		(7)		
	OR			
	e) If $\underset{0}{R}$ is a preorder relation then prove that $\underset{0}{R}_{k}^{k} = \underset{0}{R}$ for $k = 1, 2,$	(8)		
	f) Prove that $\overline{\hat{R}}_{0/2} \subset \overline{\hat{R}}_{0/2}$, where $R_{0/2}$ is an resemblance relation.	(7)		
4.	a) Explain the process of fuzzy c- mean algorithm.			
	OR			
	b) Explain sensing problem in pattern recognition.	(5)		
	c) Describe a few areas where computer based pattern recognition system are applied.			
		(7)		
	d) Explain how fuzzy clustering methods are based on fuzzy equivalence with an example	e.		
		(8)		
	OR			
	e) Explain fuzzy membership roaster method with an example.	(7)		
	f) Give a detailed description of fuzzy image processing.	(8)		
5.	a) Explain how one's face can could be verified using fuzzy tools.			
	OR			
	b) In any field of application, explain the concept of fuzzy degree of measure applied with	h an example.		
		(5)		
	c) Explain in detail fuzzy application in the field of medicine.	(15)		
	OR			
	d) Explain in detail with suitable case studies, fuzzy applications in the field of engineering.			
		(15)		