# LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034 

B.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - NOVEMBER 2019
18/17/16UMT3MC02 - VECTOR ANALYSIS AND ORDINARY DIFF. EQUATIONS
$\square$ Max. : 100 Marks

## SECTION - A

## Answer ALL questions

1. If $\phi(x, y, z)=x^{2} y+y^{2} x+z^{2}$ find $\nabla \varphi$ at $(1,1,1)$.
2. Show that the vector $\bar{F}=3 y^{4} z^{2} \vec{\imath}+4 x^{3} z^{2} \bar{\jmath}-3 x^{2} y^{2} \bar{k}$ is solenoidal.
3. If $\bar{F}=\left(3 x^{2}+6 y\right) \bar{\imath}-14 y z \bar{\jmath}+20 x z^{2} \bar{k}$, evaluate $\int \bar{F} . d r$ along the straight line joining $(0,0,0)$ to $(1,0,0)$.
4. Define conservative field.
5. Find the unit vector normal to the surface $\phi=x^{3}-x y z+z^{3}-1$ at the point $(1,1,1)$.
6. State Gauss divergent theorem.
7. Solve $\frac{d y}{d x}=\frac{y+2}{x-1}$.
8. Find the general solution of $y=x p+\frac{\alpha}{p}$.
9. Solve $\left(D^{2}-6 D+8\right) y=0$.
10. Define Legendre Linear equation.

## SECTION - B

Answer any FIVE questions

$$
(5 \times 8=40)
$$

11. If $\nabla \varphi=\left(y^{2}-2 x y z^{3}\right)+\left(3+2 x y-x^{2} z^{3}\right) \bar{\jmath}+\left(6 z^{3}-3 x^{2} y z^{2}\right) \bar{k}$, find $\phi$.
12. If $\vec{r}=\vec{r} x \vec{\imath}+y \vec{\jmath}+z \vec{k}$ and $r=|\vec{r}|$, show that $\nabla^{2} r^{n}=n(n+1) r^{n-2}$.
13. Find $\int_{C} F$. $d r$ where $\bar{F}=x^{2} \bar{\imath}+y^{3} \bar{\jmath}$ where $C$ is the portion of the parabola $y=x^{2}$ in the $X Y$ plane from $(0,0)$ to $(1,1)$.
14. Evaluate $\iint_{S} \bar{F} \cdot \bar{n} d s$ where $\bar{F}=\mathrm{yz} \bar{l}+\mathrm{zx} \bar{\jmath}+\mathrm{xy} \bar{k}$ and S is that part of the surface of the sphere $x^{2}+y^{2}+z^{2}=1$ which lies in the first octant.
15. Using Divergence theorem, evaluate $\iint_{S} \vec{F}$. ds where $\vec{F}=x^{3} \vec{\imath}+y^{3} \vec{\jmath}+z^{3} \vec{i}$ and S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
16. Solve $y\left(1-p^{2}\right)=2 p x$.
17. Solve $\left(D^{2}-4 D-5\right) y=\cos x+e^{-x}$.
18. Solve $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=\sin \left(\log x^{2}\right)$.

## SECTION - C

Answer any TWO questions
19. (a) Prove that: $\vec{F}=\left(y^{2} \cos x+z^{3}\right) \vec{\imath}+(2 y \sin x+4) \vec{\jmath}+\left(3 x z^{2}+2\right) \vec{i}$ is irrotational.
(b) If $\vec{F}=2 x z \vec{l}-x \vec{\jmath}+y^{2} \vec{k}$, then evaluate $\iiint_{V} \vec{j} \cdot d v$ where V is the region bounded by the surfaces $x=0, y=0, y=6, z=x^{2}, z=4$.
20. Verify Stroke's theorem for the function $\vec{F}=x^{2} \vec{\imath}+x y \vec{\jmath}$ in the region in XY plane bounded by $x=0 ; x=a ; y=0$ and $y=b$.
21. (a) Solve $\frac{d y}{d x}-y \tan x=\frac{\operatorname{Sin} x \cos ^{2} x}{y^{2}}$.
(b) Solve $x=1-\frac{p}{\sqrt{p^{2}}+1}$.
(c) Find the general and singular solution of $y=x p+p^{2}$.
22. (a) Solve $\left(\mathrm{D}^{2}-2 \mathrm{D}+1\right) y=x \sin x$.
(b) Solve, $\frac{d^{2} y}{d t^{2}}+4 y=4 \tan 2 x$ using method of variation of parameters.

