LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS
 FIRST SEMESTER - NOVEMBER 2019

MT 1101 - MATHEMATICS FOR STATISTICS

Date: 05-11-2019
Dept. No. \square Max. : 100 Marks
Time: 09:00-12:00

PART A

Answer all the questions:

1. If $y=9 x^{4}+5 x^{3}-7 x+14$, find the values of y when $x=-1$ and $x=1$.
2. Differentiate $x\left(x^{2}+2\right)$ with respect to x.
3. Prove that the function $f(x)=x^{3}-3 x^{2}+6$ is positive for all values of $x \geq 2$.
4. State Mean value theorem.
5. Using Maclaurin's series, expand e^{x} as an infinite series.
6. Find the partial differential coefficients of $u=\sin (a x+b y)$.
7. Integrate $x^{3}+4 x^{2}+3$ with respect to x.
8. Evaluate $\int \tan \theta d \theta$.
9. Write any two properties of definite integrals.
10. Find $\int_{0}^{2}\left(3 x^{2}+2 x+7\right) d x$.

PART B

Answer any FIVE questions:

11. Find the differential coefficient of $\sin x \sin 2 x \sin 3 x \sin 4 x$.
12. Verify Rolle's theorem for the following function (i) $f(x)=x^{2}-x+1, x \in[0,1]$
(ii) $f(x)=\sin x$ in $[0, \pi]$.
13. Show that for $x>0, x-\frac{1}{2} x^{2}<\log (1+x)<x$.
14. If $u=\log \left(x^{2}+y^{2}+z^{2}\right)$, prove that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=\frac{2}{x^{2}+y^{2}+z^{2}}$.
15. Integrate $\frac{x^{2}-x+3}{x-1}$ with respect to x.
16. Evaluate $\int \frac{x}{\sqrt{x^{2}+x+1}} d x$.
17. Prove that $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x=\frac{\pi}{4}$.
18. Evaluate $\iint r \sqrt{a^{2}-r^{2}} d r d \theta$ over the upper half of the circle $r=a \cos \theta$.

PART C

Answer any TWO questions:

19. (a) Differentiate $\frac{2 x}{(1+x)^{3}(1-x)^{3}}$ with respect to x.
(b) Find the points of inflexion in the curve $y=x^{4}-6 x^{2}+8 x-1$.
20. (a) Find the maxima and minima of the function $x^{5}-5 x^{4}+5 x^{3}+10$.
(b) Expand $\sin x$ as an infinite series.
21. (a) Verify Euler's theorem when $u=x^{3}-3 x^{2} y+3 x y^{2}+y^{3}$.
(b) If $r^{2}=(x-a)^{2}+(y-b)^{2}+(z-c)^{2}$, prove that $\frac{\partial^{2} r}{\partial x^{2}}+\frac{\partial^{2} r}{\partial y^{2}}+\frac{\partial^{2} r}{\partial z^{2}}=\frac{2}{r}$.
22. (a) Evaluate $\int \frac{x}{(x-1)(x-2)(x-3)} d x$.
(b) Evaluate $\iint\left(x^{2}+y^{2}\right) d x d y$ over the region for which $x, y \geq 0$ and $x+y \leq 1$.
@ @ @ @ @
