LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS
 FIRST SEMESTER - NOVEMBER 2019
 MT 1502 - ALGEBRA AND CALCULUS - I

Date: 30-10-2019
Dept. No. \square Max. : 100 Marks
Time: 09:00-12:00

PART- A

Answer ALL questions:

1. Find the $\mathrm{n}^{\text {th }}$ derivative of the function $e^{a x}$, where a is a constant.
2. Find the polar sub-tangent of the curve $r=a e^{\theta \cot \alpha}$.
3. What is the minimum value of the function $f(x)=x^{2}$ defined on R ?
4. Write the steps used in Lagrange's method of undetermined multipliers.
5. What is the radius of curvature of the circle $x^{2}+y^{2}=25$?
6. Write the pedal equation of a curve.
7. Form the cubic equation two of whose roots are 1 and $3-\sqrt{-2}$.
8. What is the sum of the roots of the equation $x^{3}+3 x^{2}+2 x-5=0$.
9. Define evolute of a curve.
10. State Descartes's rule of signs for negative roots of a polynomial function.

PART-B

Answer any FIVE questions:
11. Find the angle of intersection of the cardioids $r=a(1+\cos \theta)$ and $r=b(1-\cos \theta)$.
12. Find the $\mathrm{n}^{\text {th }}$ derivative of $e^{x} \sin x$.
13. If $y=e^{a \sin ^{-1} x}$, prove that $\left(1-x^{2}\right) y_{2}-x y_{1}=a^{2} y$.
14. Find the maximum and minimum values of the function $f(x)=-x^{2}-y^{2}+x^{2} y^{2}$.
15. Find the minimum value of $f(x)=x^{2}+y^{2}+z^{2}$ subject to the constraint $x+y+z=3 a$.
16. Find the radius of curvature of the curve $x^{4}+y^{4}=2$ at the point $(1,1)$.
17. If the roots of the equation $x^{3}+p x^{2}+q x+r=0$ are in arithmetic progression, show that $2 p^{3}-9 p q+27 r=0$.
18. Show that the function $x^{7}-3 x^{4}+2 x^{3}=1$ has at least four imaginary roots.

PART-C

Answer any TWO questions:
19. Prove the evolute of the cycloid $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$ is another cycloid.
20. Show that the sum of the eleventh powers of the roots of the equation $x^{7}+5 x^{4}+1=0$ is zero.
21. (a). Solve the equation $6 x^{5}+11 x^{4}-33 x^{3}-33 x^{2}+11 x+6=0$.
(b). Solve the equation $x^{4}+4 x^{3}+5 x^{2}+2 x=2$ one of whose roots is $-1+i$.
22. Using Horner's method find the real root of the equation $x^{3}-3 x+1=0$ correct to three decimal places.

