\square

PART-A

ANSWER ALL QUESTIONS:

1. Define Demand function.
2. Find the slope of the line joining $(-3,7)$ and $(7,-3)$.
3. If $A=\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right]$, find $A B$ and $B A$.
4. State Cayley-Hamilton theorem
5. Define optimum solution
6. Define non-degenerate basic feasible solution.
7. Rohit scored 120 runs which includes 3 sixes and 8 boundaries. What percentage of his total score was made by running between the wickets.
8. Find the value of 55% of $900-45 \%$ of 800 .
9. What percentage of 4800 gram is 24 gram ?
10. Write the formula for Spearman's rank correlation

PART - B

ANSWER ANY FIVE QUESTIONS:

($5 \times 8=40$)
11. a) Find the equation of a straight line which makes a negative intercept of 4 units on the X-axis and passes through the point $(2,4)$.
b). Find the intercepts of the equation $x-y+1=0$
12. Prove that $\left|\begin{array}{ccc}a & b & c \\ a-b & b-c & c-a \\ b+c & c+a & a+b\end{array}\right|=a^{3}+b^{3}+c^{3}-3 a b c$.
13. Verify Cayley-Hamilton theorem for the matrix $A=\left(\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right)$ and hence find A^{-1}.
14. Find the matrix B such that $A^{2}+3 A+B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, where $A=\left[\begin{array}{cc}3 & -2 \\ -1 & 4\end{array}\right]$
15. Ramu was 4 times as old as his son 8 years ago. After 8 years Ramu will be twice as old as his son. What are their present age.
16. A book was sold for Rs. 27.50 with a profit of 10%. If it were sold for Rs. 25.70 then what would have been the percentage of profit or loss?
17. Find the initial basic feasible solution to the following transportation problem by North-West corner rule.

| | M1 | | M2 | M3 | M4 | M5 | M6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | Available

18. Calculate the mean and standard deviation for the following table giving the age distribution of 542members.

Age in Years	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
Number of members	3	61	132	153	140	51	2

PART-C

ANSWER ANY TWO QUESTIONS:

19. a) Find the equation of the straight line passing through the point $(2,3)$ and perpendicular to the line $x-2 y=8$.
(7 marks)
b) Define Equilibrium price. Find the Equilibrium price given $Q_{d}=\frac{8 p}{p-2}$ and $Q_{s}=p^{2}$. 5 marks $)$
c) If $f(x)=x^{2}-2 x+5$, find $f(x+2)-f(x-1)+f(x+1)$.
(8 marks)
20. (a) Find the inverse of the matrix $A=\left[\begin{array}{ccc}5 & -6 & 4 \\ 7 & 4 & -3 \\ 2 & 1 & 6\end{array}\right]$
(b) Solve by using Crammer's rule $2 x-3 y=3,4 x-y=11$.
21. (a) The assignment cost of assigning any one operator to any one machine is given in the following table.

Operators

Machines

	I	II	III IV	
A	10	5	13	15
B	3	9	18	3
C	10	7	3	2
D	5	11	9	7

Find the optimum assignment schedule.
(10 marks)
b) Find the solution to the following transportation problem by Least Cost Method.
(10 marks)

	D1	D2	D3	D4	D5
S1	1	2	1	4	30
S2	3	3	2	1	50
S3	4	2	55	9	20
	20	40	30	10	

22. (a) Solve the following LPP by graphical method.

Maximize $z=5 x_{1}+4 x_{2}$
Subject to the constraints
$1.5 x_{1}+2.5 x_{2} \leq 80$
$2 x_{1}+1.5 x_{2} \leq 70$
$x_{1}, x_{2} \geq 0$.
(10 marks)
(b) Two ladies were asked to rank 7 different types of lipsticks. The ranks given by then are as follows.

Lipstick	A	B	C	D	E	F	G
Neelu	2	1	4	3	5	7	6
Neena	1	3	2	4	5	6	7

Calculate the Spearman's rank correlation.
(10 marks)

