LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 B.Com, DEGREE EXAMINATION – MATHEMATICS THIRD SEMESTER – NOVEMBER 2019 MT 3209- BASIC MATHEMATICS

Date: 04-11-2019 Time: 01.00 – 04.00 Dept. No.

Max.: 100 marks

<u>PART-A</u>

ANSWER ALL QUESTIONS:

- 1. Define Demand function.
- 2. Find the slope of the line joining (-3,7) and (7,-3).
- 3. If $A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$, find *AB* and *BA*.
- 4. State Cayley-Hamilton theorem
- 5. Define optimum solution
- 6. Define non-degenerate basic feasible solution.
- 7. Rohit scored 120 runs which includes 3 sixes and 8 boundaries. What percentage of his total score was made by running between the wickets.
- 8. Find the value of 55% of 900 45% of 800.
- 9. What percentage of 4800 gram is 24 gram?
- 10. Write the formula for Spearman's rank correlation

PART –B

ANSWER ANY FIVE QUESTIONS:

- 11. a) Find the equation of a straight line which makes a negative intercept of 4 units on the X-axis and passes through the point (2,4).
 - b). Find the intercepts of the equation x y + 1 = 0

12. Prove that
$$\begin{vmatrix} a & b & c \\ a-b & b-c & c-a \\ b+c & c+a & a+b \end{vmatrix} = a^3 + b^3 + c^3 - 3abc$$
.

13. Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$ and hence find A^{-1} .

- 14. Find the matrix *B* such that $A^2 + 3A + B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, where $A = \begin{bmatrix} 3 & -2 \\ -1 & 4 \end{bmatrix}$
- 15. Ramu was 4 times as old as his son 8 years ago. After 8 years Ramu will be twice as old as his son. What are their present age.
- 16. A book was sold for Rs. 27.50 with a profit of 10%. If it were sold for Rs.25.70 then what would have been the percentage of profit or loss ?
- 17. Find the initial basic feasible solution to the following transportation problem by North-West corner rule.

	M1	M2	M3	M4	M5	M6	Available
W1	9	12	9	6	10	5	5
W2	7	3	7	7	5	5	6
W3	6	5	9	11	3	11	2
W4	6	5	9	11	3	11	2
W5	6	5	9	11	3	11	2
W6	6	8	11	2	2	10	9
Demand	6	4	6	2	4	2	-

(10×2 =20)

(5×8=40)

18. Calculate the mean and standard deviation for the following table giving the age distribution of 542members.

Age in Years	20-30	30-40	40-50	50-60	60-70	70-80	80-90
Number of members	3	61	132	153	140	51	2

PART - C

ANSWER ANY TWO QUESTIONS:

19. a) Find the equation of the straight line passing through the point (2,3) and perpendicular to the line x - 2y = 8. (7 marks)

b) Define Equilibrium price. Find the Equilibrium price given $Q_d = \frac{8p}{p-2}$ and $Q_s = p^2$. (5 marks)

c) If
$$f(x) = x^2 - 2x + 5$$
, find $f(x+2) - f(x-1) + f(x+1)$.
 $\begin{bmatrix} 5 & -6 & 4 \end{bmatrix}$
(8 marks)

20. (a) Find the inverse of the matrix $A = \begin{bmatrix} 7 & 4 & -3 \\ 2 & 1 & 6 \end{bmatrix}$

(12 marks)

- (b) Solve by using Crammer's rule 2x 3y = 3, 4x y = 11. (8 marks)
- 21. (a) The assignment cost of assigning any one operator to any one machine is given in the following table.

			Operators			
		Ι	II	III	IV	
	А	10	5	13	15	
Machines	В	3	9	18	3	
	С	10	7	3	2	
	D	5	11	9	7	

Find the optimum assignment schedule.

b) Find the solution to the following transportation problem by Least Cost Method.

D2 D3 D4 D5 D1 2 1 4 30 **S**1 1 2 S2 3 1 50 3 2 55 20 **S**3 4 9 2040 30 10

22. (a) Solve the following LPP by graphical method.

Maximize
$$z = 5x_1 + 4x_2$$

Subject to the constraints

$$1.5x_1 + 2.5x_2 \le 80$$

$$2x_1 + 1.5x_2 \le 70$$

 $x_1, x_2 \ge 0$

(b) Two ladies were asked to rank 7 different types of lipsticks. The ranks given by then are as follows.

Lipstick	А	В	С	D	E	F	G
Neelu	2	1	4	3	5	7	6
Neena	1	3	2	4	5	6	7

Calculate the Spearman's rank correlation.

(10 marks)

(10 marks)

(10 marks)

(10 marks)

 $(2 \times 20 = 40)$