LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

THIRD SEMESTER – NOVEMBER 2019

MT 3503 - VECTOR ANALYSIS & ORDINARY DIFF. EQUATIONS

 Date: 29-10-2019
 Dept. No.
 Max. : 100 Marks

 Time: 01:00-04:00
 Max. : 100 Marks

PART-A

 $(10 \times 2 = 20)$

- 1. Prove that $Curl(\vec{r}) = 0$, where \vec{r} is the position vector.
- 2. Find a such that $(3x 2y + z)\vec{i} + (4x + ay z)\vec{j} + (x y + 2z)\vec{k}$ is solenoidal.
- 3. Define a conservative vector field.
- 4. If $\vec{F} = y \vec{i} x\vec{j}$, evaluate $\int_C \vec{F} \cdot d\vec{r}$ from (0, 0) to (1, 1) along the curve y = x.
- 5. State Green's theorem.

Answer ALL questions:

6. State Stoke's theorem.

Answer any FIVE questions:

- 7. Solve: $4p^2 8p + 3 = 0$, where $p = \frac{dy}{dx}$.
- 8. Write down the Bernoulli's equation.
- 9. Solve: $(D^2 5D + 6) y = 0$.
- 10. Find the particular integral $(D^2 3D + 2) y = e^x$.

PART - B

 $(5 \times 8 = 40)$

- 11. Compute the divergence and curl of the vector $\vec{F} = xy^2 \vec{i} + 2x^2yz\vec{j} 3yz^2\vec{k}$ at (1, -1, 1). 12. Prove that $\nabla \times (\nabla \times \vec{F}) = \nabla (\nabla \cdot \vec{F}) - \nabla^2 \vec{F}$.
- 13. Evaluate $\iint_{S} \overset{\mathbf{u}}{A} \cdot \overset{\mathbf{n}}{n} ds$, where $\vec{A} = y z \vec{i} + 2 y^2 \vec{j} + x z^2 \vec{k}$ and S is the surface of the cylinder
 - $x^2 + y^2 = 9$ included in the first octant between z = 10 and z = 2.
- 14. Evaluate $\iiint_V \nabla \vec{F} dV$ where $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ and V is the volume enclosed by the cube
 - $0 \leq x, y, z \leq 1.$
- 15. Solve: $p(1 + q^2) = q(z 1)$.
- 16. Find the general solution of (y + z)p + (z + x)q = x + y.
- 17. Solve: $(D^2 + 5D + 6)y = e^x$.
- 18. Evaluate: $(D^2 + 16) y = cos4x$.

PART - C

Answer any TWO questions:

$(2 \times 20 = 40)$

1

19. (a) Prove that $\vec{F} = (y^2 \cos x + z^3) \vec{i} + (2y \sin x - 4)\vec{j} + (3z^2)\vec{k}$ in irrotational and find it's scalar potential.

(b) Find the value of the integral $\int_C \vec{u} \cdot d\vec{r}$ where $\vec{A} = yz \vec{\iota} + zx \vec{j} - xy \vec{u}$ is the following cases (i) *C* is the curve whose parametric equation are $x = t, y = t^2, z = t^3$ Drawn from (0, 0, 0) to (2, 4, 8). (ii) *C* is the curve obtained joining (0, 0, 0) to (2, 0, 0) then

- (2, 0, 0) to (2, 4, 0) and then (2, 4, 0) to (2, 4, 8). (10+10)
- 20. Verify divergence theorem for $\vec{w} = (x^2 yz)\vec{i} + (y^2 zx)\vec{j} + (z^2 xy)\vec{k}$ taken over the rectangular parallelepiped $0 \le x \le a, 0 \le y \le b, 0 \le z \le c.$ (20)
- 21. Solve: $(5+2x)^2 \frac{d^2y}{dx^2} 6(5+2x)\frac{dy}{dx} + 8y = 6x.$ (20)

22. Solve: (a) $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = logx$. (b) $\frac{d^2y}{dx^2} + y = secx$. (10+10)
