LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - NOVEMBER 2019

MT 3503 - VECTOR ANALYSIS \& ORDINARY DIFF. EQUATIONS

Date: 29-10-2019
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

PART-A

Answer ALL questions:

1. Prove that $\operatorname{Curl}(\vec{r})=0$, where \vec{r} is the position vector.
2. Find a such that $(3 x-2 y+z) \vec{\imath}+(4 x+a y-z) \vec{\jmath}+(x-y+2 z)$ ir solenoidal.
3. Define a conservative vector field.
4. If $\vec{F}=y \vec{\imath}-x \vec{\jmath}$, evaluate $\int_{C} \vec{F} . d \vec{r}$ from $(0,0)$ to $(1,1)$ along the curve $y=x$.
5. State Green's theorem.
6. State Stoke's theorem.
7. Solve: $4 p^{2}-8 p+3=0$, where $p=\frac{d y}{d x}$.
8. Write down the Bernoulli's equation.
9. Solve: $\left(D^{2}-5 D+6\right) y=0$.
10. Find the particular integral $\left(D^{2}-3 D+2\right) y=e^{x}$.

PART - B

Answer any FIVE questions:
11. Compute the divergence and curl of the vector $\vec{F}=x y^{2} \vec{\imath}+2 x^{2} y z \vec{\jmath}-3 y z^{2} \overrightarrow{i k}$ at $(1,-1,1)$.
12. Prove that $\nabla \times(\nabla \times \vec{F})=\nabla(\nabla . \vec{F})-\nabla^{2} \vec{F}$.
13. Evaluate $\iint_{S}^{\mathbf{u}} A \cdot \hat{n} d s$, where $\vec{A}=y z \vec{\imath}+2 y^{2} \vec{\jmath}+x z^{2} \vec{i}$ and S is the surface of the cylinder $x^{2}+y^{2}=9$ included in the first octant between $z=0$ and $z=2$.
14. Evaluate $\iiint_{V} \nabla \cdot \stackrel{\mathrm{r}}{F} d V$ where $\vec{F}=x^{2} \vec{\imath}+y^{2} \vec{\jmath}+z^{2} \overrightarrow{\|}$ and V is the volume enclosed by the cube $0 \leq x, y, z \leq 1$.
15. Solve: $p\left(1+q^{2}\right)=q(z-1)$.
16. Find the general solution of $(y+z) p+(z+x) q=x+y$.
17. Solve: $\left(D^{2}+5 D+6\right) y=e^{x}$.
18. Evaluate: $\left(D^{2}+16\right) y=\cos 4 x$.

PART - C

Answer any TWO questions:

19. (a) Prove that $\vec{F}=\left(y^{2} \cos x+z^{3} \vec{\imath}+(2 y \sin x-4) \vec{\jmath}+(3) z^{2}\right) \vec{k}$ im irrotational and find it's scalar potential.
(b) Find the value of the integral \int_{C} iilij . $d \vec{r}$ where $\vec{A}=y z \vec{\imath}+z x \vec{\jmath}-x y$ ilitin the following cases
(i) C is the curve whose parametric equation are $x=t, y=t^{2}, z=t^{3}$

Drawn from $(0,0,0)$ to $(2,4$) . (ii) C is the curve obtained joining $(0,0,0)$ to $(2,0,0)$ then $(2,0,0)$ to $(2,4,0)$ and then $2,4,0)$ to $(2,4,8) .(10+10)$
20. Verify divergence theorem for $\overrightarrow{:}=\left(x^{2}-y z\right) \vec{\imath}+\left(y^{2}-z x\right) \vec{\jmath}+\left(z^{2}-x y\right) \vec{k}$ taken over the rectangular parallelepiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$. (20)
21. Solve: $(5+2 x)^{2} \frac{d^{2} y}{d x^{2}}-6(5+2 x) \frac{d y}{d x}+8 y=6 x$. (20)
22. Solve: (a) $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=\log x$. (b) $\frac{d^{2} y}{d x^{2}}+y=\sec x$. $(10+10)$

