LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIFTH SEMESTER – **NOVEMBER 2019**

MT 5509 – ALGEBRAIC STRUCTURE - II

Date: 02-11-2019 Time: 09:00-12:00

Part A (Answer ALL questions)

- 1. Define a vector space *V* over a field *F*.
- 2. If V is a vector space over a field F, show that (-a)v = a(-v) = -(av) for $a \in F$, $v \in V$.

Dept. No.

- 3. Check whether the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}$ defined by T(a,b) = ab for all $a, b \in \mathbb{R}$ is a vector space homomorphism or not.
- 4. Define Kernel of a homomorphism *T*.
- 5. Let R^3 be the inner product space over R under standard inner product. Find the norm of (3,0,4).
- 6. Define eigen value of a linear transformation *T*.
- 7. When do you say that a matrix is invertible?
- 8. Define a symmetric matrix.

9. Find the rank of the matrix $A = \begin{pmatrix} 1 & 5 & -7 \\ 2 & 3 & 1 \end{pmatrix}$ over the field of rational numbers.

10. If T * T = I, then show that T is unitary.

Part B (Answer any FIVE questions)

- 11. Prove that the intersection of two subspaces of a vector space V is a subspace of V.
- 12. Express the vector (1, -2, 5) as a linear combination of the vectors (1, 1, 1), (1, 2, 3) and (2, -1, 1) in R³ over the field of real numbers R.
- 13. If V and W are two *n*-dimensional vector spaces over F. Then prove that any isomorphism T of V onto W maps a basis of V onto a basis of W.
- 14. Let $T \in A(V)$ and $\} \in F$. Prove that $\}$ is an eigenvalue of T if and only if $\}I T$ is singular.
- 15. State and prove Schwarz inequality.
- 16. Let $V = R^3$ and let $T \in A(V)$ be defined by $T(a_1, a_2, a_3) = (3a_1 + a_3, -2a_1 + a_2, -a_1 + 2a_2 + 4a_3)$. What is the matrix of *T* relative to the basis $v_1 = (1, 0, 1), v_2 = (-1, 2, 1), v_3 = (2, 1, 1)$?
- 17. Show that any square matrix *A* can be expressed uniquely as the sum of a symmetric and a skew-symmetric matrices.

(10x2 = 20)

 $(5 \times 8 = 40)$

Max.: 100 Marks

18. If $\langle T(v), T(v) \rangle = \langle v, v \rangle$ for all $v \in V$ an inner product space, show that T is unitary.

Part C (Answer any TWO questions)

- 19. (a) Let V be a vector space over a field F and W be a subspace of V. Prove that V/W is a vector space over F.
 - (b) If S and T are subsets of a vector space V over F, then prove that the following:
 - (i) S is a subspace of V if and only if L(S) = S.
 - (ii) $S \subseteq T$ implies that $L(S) \subseteq L(T)$.

(12 + 8)

 $(2 \times 20 = 40)$

20. If W_1 and W_2 are subspaces of a finite dimensional vector space V, then prove that $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 I W_2)$.

(20)

21. Prove that every finite dimensional inner product space has an orthonormal set as a basis.

(20)

22. (a) If $A, B \in F_n$ and $\} \in F$, then prove that the following.

(i) $(A^{t})^{t} = A^{t}$, (ii) $(A^{t})^{t} = A$, (iii) $(A + B)^{t} = A^{t} + B^{t}$, (iv) $(AB)^{t} = B^{t}A^{t}$.

\$

(b) Show that the system of following linear equations is inconsistent.

 $x_1 + 2x_2 + x_3 = 11$, $4x_1 + 6x_2 + 5x_3 = 8$, $2x_1 + 2x_2 + 3x_3 = 19$.

(10 + 10)