LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS
 FIFTH SEMESTER - NOVEMBER 2019

MT 5509 - ALGEBRAIC STRUCTURE - II

Date: 02-11-2019
Dept. No. \square Max. : 100 Marks
Time: 09:00-12:00

Part A (Answer ALL questions)
$(10 \times 2=20)$

1. Define a vector space V over a field F.
2. If V is a vector space over a field F, show that $(-a) v=a(-v)=-(a v)$ for $a \in F, v \in V$.
3. Check whether the linear transformation $T: R^{2} \rightarrow R$ defined by $T(a, b)=a b$ for all $a, b \in R$ is a vector space homomorphism or not.
4. Define Kernel of a homomorphism T.
5. Let R^{3} be the inner product space over R under standard inner product. Find the norm of $(3,0,4)$.
6. Define eigen value of a linear transformation T.
7. When do you say that a matrix is invertible?
8. Define a symmetric matrix.
9. Find the rank of the matrix $A=\left(\begin{array}{ccc}1 & 5 & -7 \\ 2 & 3 & 1\end{array}\right)$ over the field of rational numbers.
10. If $T * T=I$, then show that T is unitary.

Part B (Answer any FIVE questions)

11. Prove that the intersection of two subspaces of a vector space V is a subspace of V.
12. Express the vector $(1,-2,5)$ as a linear combination of the vectors $(1,1,1),(1,2,3)$ and $(2,-1,1)$ in R^{3} over the field of real numbers R.
13. If V and W are two n-dimensional vector spaces over F. Then prove that any isomorphism T of V onto W maps a basis of V onto a basis of W.
14. Let $T \in A(V)$ and $\lambda \in F$. Prove that λ is an eigenvalue of T if and only if $\lambda I-T$ is singular.
15. State and prove Schwarz inequality.
16. Let $V=R^{3}$ and let $T \in A(V)$ be defined by $T\left(a_{1}, a_{2}, a_{3}\right)=\left(3 a_{1}+a_{3},-2 a_{1}+a_{2},-a_{1}+2 a_{2}+4 a_{3}\right)$. What is the matrix of T relative to the basis $v_{1}=(1,0,1), v_{2}=(-1,2,1), v_{3}=(2,1,1)$?
17. Show that any square matrix A can be expressed uniquely as the sum of a symmetric and a skewsymmetric matrices.
18. If $\langle T(v), T(v)\rangle=\langle v, v\rangle$ for all $v \in V$ an inner product space, show that T is unitary.

Part C (Answer any TWO questions)

19. (a) Let V be a vector space over a field F and W be a subspace of V. Prove that V / W is a vector space over F.
(b) If S and T are subsets of a vector space V over F, then prove that the following:
(i) S is a subspace of V if and only if $L(S)=S$.
(ii) $S \subseteq T$ implies that $L(S) \subseteq L(T)$.
20. If W_{1} and W_{2} are subspaces of a finite dimensional vector space V, then prove that $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \mathrm{I} W_{2}\right)$.
21. Prove that every finite dimensional inner product space has an orthonormal set as a basis.
22. (a) If $A, B \in F_{n}$ and $\lambda \in F$, then prove that the following.
(i) $(\lambda A)^{t}=\lambda A^{t}$,
(ii) $\left(A^{t}\right)^{t}=A$,
(iii) $(A+B)^{t}=A^{t}+B^{t}$,
(iv) $(A B)^{t}=B^{t} A^{t}$.
(b) Show that the system of following linear equations is inconsistent.

$$
x_{1}+2 x_{2}+x_{3}=11, \quad 4 x_{1}+6 x_{2}+5 x_{3}=8, \quad 2 x_{1}+2 x_{2}+3 x_{3}=19 .
$$

