LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIRST SEMESTER – **NOVEMBER 2019**

PMT 1503 – ORDINARY DIFFERENTIAL EQUATIONS

Max.: 100 Marks

Date: 01-11-2019 Time: 01:00-04:00

ANSWER ALL QUESTIONS. EACH QUESTION CARRIES 20 MARKS.

Dept. No.

1. (a) Let $x_p(t)$ be any particular solution of L[x(t)] = d(t) and $x_h(t)$ be the general solution of L[x(t)] = 0. Show that $x(t) = x_p(t) + x_h(t)$ is the general solution of L[x(t)] = d(t). (5)(OR)(b) By proving the necessary result, obtain the Abel's formula. (5)(c) Using the method of variation of parameters, find the general solution of x''' - x' = t. (15)(OR)(d) Derive the various possible solutions of the equation $L(y) = a_0y'' + a_1y' + a_2y = 0$ where a_0, a_1, a_2 are known real constants and $a_0 \neq 0$. (15)2. (a) Prove that (i) $P_l(-1) = (-1)^l$, and (ii) $P'_l(1) = \frac{1}{2}l(l+1)$. (5) (OR)(b) State and prove Rodrigues' formula. (5) (c) Solve $2x \frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$ by Frobenius method. (15)(OR)(d) State and prove the orthogonality properties of the Legendre polynomial. (15)3. (a) When *n* is a non-zero integer, show that $J_{-n}(x) = (-1)^n J_n(x)$. (5) (OR)(b) Prove that $J'_n(x) = J_{n-1}(x) - \frac{n}{r}J_n(x)$. (5) (c) State and prove the integral representations of Bessel function. (15)(OR)(d) Solve: $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2)y = 0, n \ge 0.$ (15)4. (a) Let x_m and x_n be two eigenfunctions of the Sturm-Liouville problem corresponding to two distinct eigenvalues λ_m and λ_n . Prove that that $[pW(x_m, x_n)]_A^B = 0$. (5)(OR)(b) Using the method of successive approximations, solve the initial value problem x'(t) = -x(t), x(0) = $1, t \ge 0.$ (5)(c) State and prove Picard theorem for initial value problem. (15)(OR)

- (d) Prove that x(t) is a solution of L(x(t)) + f(t) = 0, $a \le t \le b$, iff $x(t) = \int_a^b G(t,s)f(s) ds$ where G(t,s) is the Green function. (15)
- 5. (a) When do you say that a solution is stable? Check whether the solution of the equation x' = -x is stable at origin. (5)
 - (OR) (b) Define an autonomous system and state its stability behaviors. (5)
 - (c) Explain Lyapunov's direct method for analyzing the stability of x' = Ax. (15)
 - (OR)
 - (d) State and prove the two fundamental theorems on the stability behaviors of the non-autonomous systems. (15)
