LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2019
PMT 1503 - ORDINARY DIFFERENTIAL EQUATIONS

Date: 01-11-2019
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

ANSWER ALL QUESTIONS. EACH QUESTION CARRIES 20 MARKS.

1. (a) Let $x_{p}(t)$ be any particular solution of $L[x(t)]=d(t)$ and $x_{h}(t)$ be the general solution of $L[x(t)]=0$. Show that $x(t)=x_{p}(t)+x_{h}(t)$ is the general solution of $L[x(t)]=d(t)$.
(b) By proving the necessary result, obtain the Abel's formula.
(c) Using the method of variation of parameters, find the general solution of $x^{\prime \prime \prime}-x^{\prime}=t$.
(OR)
(d) Derive the various possible solutions of the equation $L(y)=a_{0} y^{\prime \prime}+a_{1} y^{\prime}+a_{2} y=0$ where a_{0}, a_{1}, a_{2} are known real constants and $a_{0} \neq 0$.
2. (a) Prove that (i) $P_{l}(-1)=(-1)^{l}$, and (ii) $P_{l}^{\prime}(1)=\frac{1}{2} l(l+1)$.
(b) State and prove Rodrigues' formula.
(c) Solve $2 x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=0$ by Frobenius method.
(OR)
(d) State and prove the orthogonality properties of the Legendre polynomial.
3. (a) When n is a non-zero integer, show that $J_{-n}(x)=(-1)^{n} J_{n}(x)$.
(OR)
(b) Prove that $J_{n}^{\prime}(x)=J_{n-1}(x)-\frac{n}{x} J_{n}(x)$.
(c) State and prove the integral representations of Bessel function.
(d) Solve: $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-n^{2}\right) y=0, n \geq 0$.
4. (a) Let x_{m} and x_{n} be two eigenfunctions of the Sturm- Liouville problem corresponding to two distinct eigenvalues λ_{m} and λ_{n}. Prove that that $\left[p W\left(x_{m}, x_{n}\right)\right]_{A}^{B}=0$.
(OR)
(b) Using the method of successive approximations, solve the initial value problem $x^{\prime}(t)=-x(t), x(0)=$ $1, t \geq 0$.
(c) State and prove Picard theorem for initial value problem.
(OR)
(d) Prove that $x(t)$ is a solution of $L(x(t))+f(t)=0, a \leq t \leq b$, iff $x(t)=\int_{a}^{b} G(t, s) f(s) d s$ where $G(t, s)$ is the Green function.
5. (a) When do you say that a solution is stable? Check whether the solution of the equation $x^{\prime}=-x$ is stable at origin.
(OR)
(b) Define an autonomous system and state its stability behaviors.
(c) Explain Lyapunov's direct method for analyzing the stability of $x^{\prime}=A x$.
(OR)
(d) State and prove the two fundamental theorems on the stability behaviors of the non-autonomous systems.
