B.Sc. DEGREE EXAMINATION - CHEMISTRY

FIRST SEMESTER - NOVEMBER 2019
UMT 1302 - MATHEMATICS FOR CHEMISTRY

Date: 05-11-2019
Dept. No. \square Max. : 100 Marks
Time: 09:00-12:00

SECTION - A

ANSWER ALL QUESTIONS:

$(10 \times 2=20)$

1. If $y=x^{x}$, then find $\frac{d y}{d x}$.
2. Find the slope of the curve $r=e^{\theta}$ at $\theta=0$.
3. Find the first order partial derivatives of $u=2 x y z^{4}-4 y z$.
4. Prove that $\frac{e^{2}-1}{e^{2}+1}=\frac{\frac{1}{1!}+\frac{1}{3!}+\frac{1}{5!}+\ldots \infty}{1+\frac{1}{2!}+\frac{1}{4!}+\ldots \infty}$.
5. Write the expansions for $\log (1-x)$ and e^{x}.
6. Write the Bernoulli's formula for integration by parts.
7. Write down the expansion of $\cos n \theta$.
8. Evaluate $\int \frac{1}{1+16 x^{2}} d x$.
9. The mean and variance of a binomial distribution are 4 and $\frac{4}{3}$ respectively. Find $P(X \geq 1)$.
10. Define Poisson distribution.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

11. Show that in the parabola $y^{2}=4 a x$, the subtangent at any point is double the abscissa and the subnormal is constant.
12. a) Find the angle at which the radius vector cuts the curve $\frac{l}{r}=1+e \cos \theta$.
b) Find the slope of the tangent with the initial line for the cardioid $r=a(1-\cos \theta)$ at $\theta=\frac{\pi}{6}$.
13. Find the sum to infinity of the series $1+\frac{2}{6}+\frac{2.5}{6.12}+\frac{2.5 .8}{6.12 .18}+\cdots$.
14. Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{a \sin x+b \cos x}{\sin x+\cos x} d x$.
15. (a) Using Bernoulli's formula, evaluate $\int x^{2} e^{-2 x} d x$.
(b) Using reduction formula, evaluate $\int_{0}^{\pi / 2} \sin ^{7} x d x$.
16. Express $\sin 7 \theta$ in terms of $\sin \theta$.
17. Calculate the mean and standard deviation for the following frequency distribution:

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
No. of students	12	18	27	20	17	6

18. The rank of same 16 students in Mathematics and Physics are as follows. Two numbers within brackets denote the ranks of the students in Mathematics and Physics: $(1,1)(2,10)(3,3)(4,4)(5,5)$ $(6,7)(7,2)(8,6)(9,8)(10,11)(11,15)(12,9)(13,14)(14,12)(15,16)(16,13)$. Calculate the rank correlation coefficient for proficiencies of this group in Mathematics and Physics.

SECTION - C

ANSWER ANY TWO QUESTIONS:

19. (a) Find the angle of intersection of the cardioids $r=a(1+\cos \partial)$ and $r=b(1-\cos \theta)$.
(b) Discuss the Maxima and Minima of the function $u(x, y)=x^{3} y^{2}(6-x-y)$.
20. (a) Show that the sum of the series $1+\frac{1+3}{2!}+\frac{1+3+3^{2}}{3!}+\frac{1+3+3^{2}+3^{3}}{4!}+\ldots \ldots \ldots \infty=\frac{1}{2} e\left(e^{2}-1\right)$.
(b)Evaluate $\int \frac{1}{x(x-1)(x+1)} d x$.
21. (a) Show that $\log \sqrt{ } 12=1+\left(\frac{1}{2}+\frac{1}{3}\right) \frac{1}{4}+\left(\frac{1}{4}+\frac{1}{5}\right) \frac{1}{4^{2}}+\cdots$
(b) Prove that $32 \cos ^{6} \theta=\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10$.
$(12+8)$
22. Obtain the equations of two lines of regression for the following data. Also obtain the estimate of X for $Y=70$.

X	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

