LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
 B.Sc. DEGREE EXAMINATION - MATHEMATICS
 FIRST SEMESTER - NOVEMBER 2019
 UMT 1502 - CALCULUS

Date: 01-11-2019
Time: 09:00-12:00
Dept. No. \square Max. : 100 Marks

$\underline{\text { SECTION - A }}$

Answer ALL questions
$(10 \times 2=20)$

1. Find the nth derivative of $\frac{1}{a x+b}$.
2. Find the nth derivative of $x e^{5 x}$ using Leibnitz theorem.
3. Find the slope of the curve $r=e^{\theta}$ at $\theta=0$.
4. Show that in the curve $r=a \theta$, the polar subtangent varies as the square of the radius vector and the polar subnormal is constant.
5. Evaluate $\int \tan ^{2} x d x$.
6. If f is an even function, what is $\int_{-a}^{a} f(x) d x$?
7. Evaluate $\int_{0}^{1} \int_{0}^{1}(x+y) d x d y$.
8. Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x y z d x d y d z$.
9. Show that $\Gamma(n+1)=n \Gamma(n)$.
10. Define Beta function.

SECTION - B

Answer any FIVE questions.
11. Investigate the maximum and minimum value of

$$
4 x^{2}+6 x y+9 y^{2}-8 x-24 y+4
$$

12. Find the nth derivative of $\frac{x+1}{(2 x-1)(2 x+1)}$.
13. Find the angle of intersection of the curves $r=a(1+\cos \theta)$ and

$$
r=b(1-\cos \theta)
$$

14. Find the radius of curvature at the point $\left(\frac{a}{4}, \frac{a}{4}\right)$ to the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$.
15. Evaluate $\int \frac{2 x+3}{x^{2}+5 x+7} d x$.
16. Evaluate $\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$.
17. By changing the order of integration, evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2}+y^{2}} d x d y$.
18. Express $\int_{0}^{1} x^{m}\left(1-x^{n}\right)^{p} d x$ interms of Gamma function and evaluate the integral $\int_{0}^{1} x^{5}\left(1-x^{3}\right)^{10} d x$.

SECTION - C

Answer any TWO questions

$$
(2 \times 20=40)
$$

19.(a) Show that the maximum value of $x^{2} y^{2} z^{2}$ subject to the condition $x^{2}+y^{2}+z^{2}=a^{2}$ is $\left(\frac{a^{2}}{3}\right)^{3}$.
(b) Find the lengths of the subtangent and subnormal at (a, a) on the cissoid $y^{2}=\frac{x^{3}}{2 a-x}$.
20. (a) Find the equation of the evolute of the parabola $y^{2}=4 a x$, where $x=a t^{2}$ and $y=2 a t$.
(b) Evaluate $\int \frac{2 \sin x+\cos x}{5+8 \cos x} d x$.
(10+10)
21. (a) If $\mathrm{I}_{\mathrm{n}}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$ where n is a positive integer, show that $\mathrm{I}_{\mathrm{n}}=\frac{1}{n-1}-\mathrm{I}_{\mathrm{n}-2}$ and hence evaluate $\int_{0}^{\frac{\pi}{4}} \tan ^{6} x d x$.
(b) Evaluate $\iiint x y z \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z$ taken through the positive octant of the sphere

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=1 \tag{10+10}
\end{equation*}
$$

22. (a) Evaluate $\int_{R} \int_{R}(x-y)^{4} e^{x+y} d x d y$, where R is the square with vertices $(1,0),(2,1),(1,2)$ and $(0,1)$.
(b) Show that $\beta(m, n)=\frac{\Gamma(n) \Gamma(m)}{\Gamma(m+n)}$.
(10+10)
