LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – MATHEMATICS

FIRST SEMESTER – NOVEMBER 2019

UMT 1502 - CALCULUS

Date: 01-11-2019 Time: 09:00-12:00

<u>SECTION – A</u>

- **Answer ALL questions**
- Find the *n* th derivative of $\frac{1}{ax+b}$. 1.
- Find the *n* th derivative of xe^{5x} using Leibnitz theorem. 2.
- Find the slope of the curve $r = e^{\theta}$ at $\theta = 0$. 3.
- Show that in the curve $r = a\theta$, the polar subtangent varies as the square of the radius 4. vector and the polar subnormal is constant.
- Evaluate $\int tan^2 x dx$. 5.
- If f is an even function, what is $\int_{-a}^{a} f(x) dx$? 6.
- Evaluate $\int_0^1 \int_0^1 (x+y) dx dy$. 7.
- Evaluate $\int_0^1 \int_0^1 \int_0^1 xyz \, dx \, dy \, dz$. 8.
- 9. Show that $\Gamma(n+1) = n \Gamma(n)$.
- 10. Define Beta function.

<u>SECTION – B</u>

Answer any FIVE questions.

Investigate the maximum and minimum value of 11.

 $4x^2 + 6xy + 9y^2 - 8x - 24y + 4$.

12. Find the *n*th derivative of $\frac{x+1}{(2x-1)(2x+1)}$.

Find the angle of intersection of the curves $r = a(1 + \cos \theta)$ and 13. $r = b(1 - \cos \theta).$

Find the radius of curvature at the point $(\frac{a}{4}, \frac{a}{4})$ to the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$. 14.

 $(5\hat{1} 8 = 40)$

 $(10\hat{1}2 = 20)$

Max.: 100 Marks

Dept. No.

15. Evaluate
$$\int_{a}^{2x+3} dx$$
.
16. Evaluate $\int_{0}^{n/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x + (\cos x)}} dx$.
17. By changing the order of integration, evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2}+y^{2}} dxdy$.
18. Express $\int_{0}^{1} x^{m} (1 - x^{n})^{p} dx$ interms of Gamma function and evaluate the integral $\int_{0}^{1} x^{5} (1 - x^{3})^{10} dx$.
SECTION - C
Answer any TWO questions (2 T 20 = 40)
19. (a) Show that the maximum value of $x^{2}y^{2}z^{2}$ subject to the condition $x^{2} + y^{2} + z^{2} = a^{2}$ is $\left(\frac{a^{2}}{3}\right)^{3}$.
(b) Find the lengths of the subtangent and subnormal at (a, a) on the cissoid $y^{2} = \frac{x^{3}}{2a - x}$. (10+10)
20. (a) Find the equation of the evolute of the parabola $y^{2} = 4ax$, where $x = at^{2}$ and $y = 2at$.
(b) Evaluate $\int_{0}^{\frac{\pi}{2}} tan^{n} x dx$ where n is a positive integer, show that $l_{n} = \frac{1}{n-1} - l_{n,2}$ and hence evaluate $\int_{0}^{\frac{\pi}{4}} tan^{6} x dx$.
(b) Evaluate $\int_{0}^{\frac{\pi}{4}} tan^{6} x dx$.
(c) Evaluate $\int_{0}^{\frac{\pi}{4}} f_{n} f_{n} x dx$ where n is a positive integer, show that $l_{n} = \frac{1}{n-1} - l_{n,2}$ and hence $x^{2} + y^{2} + z^{2} = 1$. (10+10)
22. (a) Evaluate $\int_{R}^{\pi} \int_{R} (x - y)^{4} e^{x+y} dxdy$, where R is the square with vertices (1,0), (2,1), (1,2) and (0,1).
(b) Show that $\beta(m, n) = \frac{\Gamma(n)\Gamma(m)}{\Gamma(m+n)}$. (10+10)