LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

FIRST SEMESTER – APRIL 2016

ST 1820 – ADVANCED DISTRIBUTION THEORY

Dept. No. Date: 28-04-2016 Max.: 100 Marks Time: 01:00-04:00 SECTION - A Answer ALL questions. Each carries TWO marks. (10 x 2 = 20 marks)1. Show that X is a random variable, when it denotes the number of heads obtained if a coin is tossed twice. 2. Write the pdf of truncated binomial, left truncated at '0' and derive its mgf. 3. Prove that the truncated Poisson distribution, truncated at zero, is a power series distribution. 4. State lack of memory property and show that Geometric distribution satisfies it. 5. Obtain the distribution of $\frac{1}{x}$, when X follows Lognormal. 6. Find the distribution of 2X, when X follows Inverse Gaussian. 7. Obtain the pgf and hence mgf of power-series distribution. 8. Let (X_1, X_2) follow BB (n, p_1, p_2, p_{12}) . Write the marginal distributions of X_1 and X_2 . 9. State and prove additive property of bivariate Poisson distribution. 10. Let X follow B(2, θ), $\theta = 0.1$, 0.2, 0.3 and let θ follow discrete uniform. Derive the mean of the compound distribution. **SECTION - B** Answer any **FIVE** questions. Each carries **EIGHT** marks. $(5 \times 8 = 40 \text{ marks})$ 11. Obtain the decomposition of the distribution function F of a random variable X given by $F(x) = \begin{cases} 0, & x < 2\\ \left(\frac{2}{3}\right)x - 1, & 2 & x < 3\\ 1 & 2 & x < 3 \end{cases}$ Hence find the mgf of X. 12. State and prove a characterization of Poisson distribution through pdf. 13. Define inverse Gaussian distribution and find its mgf. 14. Show that BVP($\lambda_1, \lambda_2, \lambda_{12}$) is the limiting distribution of BB(n, p₁, p₂, p₁₂). 15. Derive the regression equations associated with bivariate binomial distribution. 16. Let (X_1, X_2) follow BVN $(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$. Obtain the conditional distribution of $X_2 | X_1 = x_1$. 17. Obtain a characterization of exponential distribution through failure rate function. 18. Define non-central't' distribution and find its pdf. SECTION - C Answer any TWO questions. Each carries TWENTY marks. $(2 \times 20 = 40 \text{ marks})$ 19. (a) Let $X_1, X_2, ..., X_n$ be iid non-negative integer valued random variables. Prove that X_1 is Geometric iff $Min\{X_1, X_2, ..., X_n\}$ is Geometric. (10)(b) Let $(X_1, X_2) \sim BB(n, p_1, p_2, p_{12})$. Show that $(X_1 | X_2 = x_2) d (U_1 + V_1)$, where

$$U_1 \sim B (n - x_2, \frac{p_{12}}{p_1 + p_{12}}), \quad V_1 \sim B(x_2, \frac{p_{12}}{p_2 + p_{12}}) \text{ and } U_1 \text{ is independent of } V_1.$$
 (10)

20(a) Find the cgf of power series distribution. Hence obtain the recurrence relation satisfied by the cumulants.	(10)
(b) Let X ₁ and X ₂ be two independent Normal variables with the same variance. State and prove a necessary and sufficient condition for two linear combinations of X ₁ and X ₂ to be independent.	(10)
21. (a) If X follows IG (μ, λ) , then prove that $((X - \mu)^2) / (\mu^2 X)$ follows $\chi^2(1)$.	(10)
(b) Show that mean > median > mode for a Log-Normal distribution.	(10)
22. (a) Derive the mgf of (X_1, X_2) at (t_1, t_2) , when $(X_1, X_2) \sim BVN(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$.	(10)
 (b) Let X₁, X₂, X₃ be independent normal variables such that E(X₁) = 1, E(X₂) = 3, E(X₃) = 2 and V (X₁) = 2, V (X₂) = 2, V (X₃) = 3. Verify the independence of the following pairs: (i) X₁ + X₂ and X₁ - X₂ 	
(ii) $X_1 + X_2 - 2X_3$ and $X_1 - X_2 + 2X_3$ (iii) $2X_1 + X_3$ and $X_2 - X_3$.	(10)

\$\$\$\$\$\$\$