LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER - APRIL 2016
ST 1820 - ADVANCED DISTRIBUTION THEORY

Date: 28-04-2016
Time: 01:00-04:00
Dept. No. \square Max. : 100 Marks

SECTION - A

Answer ALL questions. Each carries TWO marks.
(10 x $2=20$ marks)

1. Show that X is a random variable, when it denotes the number of heads obtained if a coin is tossed twice.
2. Write the pdf of truncated binomial, left truncated at ' 0 ' and derive its mgf.
3. Prove that the truncated Poisson distribution, truncated at zero, is a power series distribution.
4. State lack of memory property and show that Geometric distribution satisfies it.
5. Obtain the distribution of $\frac{1}{X}$, when X follows Lognormal.
6. Find the distribution of 2 X , when X follows Inverse Gaussian.
7. Obtain the pgf and hence mgf of power-series distribution.
8. Let $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ follow $\mathrm{BB}\left(\mathrm{n}, \mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{12}\right)$. Write the marginal distributions of X_{1} and X_{2},
9. State and prove additive property of bivariate Poisson distribution.
10. Let X follow $B(2, \theta), \theta=0.1,0.2,0.3$ and let θ follow discrete uniform. Derive the mean of the compound distribution.

SECTION - B

Answer any FIVE questions. Each carries EIGHT marks. ($5 \times 8=40$ marks)
11. Obtain the decomposition of the distribution function F of a random variable X given by

$$
\mathrm{F}(\mathrm{x})=\left\{\begin{array}{lr}
0, & x<2 \\
\left(\frac{2}{3}\right) x-1, & 2 \leq x<3 \\
1, & 3 \leq x<\infty
\end{array}\right.
$$

Hence find the mgf of X .
12. State and prove a characterization of Poisson distribution through pdf.
13. Define inverse Gaussian distribution and find its mgf.
14. Show that $\operatorname{BVP}\left(\lambda_{1}, \lambda_{2}, \lambda_{12}\right)$ is the limiting distribution of $\operatorname{BB}\left(\mathrm{n}, \mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{12}\right)$.
15. Derive the regression equations associated with bivariate binomial distribution.
16. Let $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ follow $\mathrm{BVN}\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$. Obtain the conditional distribution of $X_{2} \mid X_{1}=x_{1}$.
17. Obtain a characterization of exponential distribution through failure rate function.
18. Define non-central' t ' distribution and find its pdf.
SECTION - C

Answer any TWO questions. Each carries TWENTY marks.
19. (a) Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid non-negative integer valued random variables. Prove that X_{1} is Geometric iff $\operatorname{Min}\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is Geometric.
(b) Let $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \sim \mathrm{BB}\left(\mathrm{n}, \mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{12}\right)$. Show that $\left(\mathrm{X}_{1} \mid \mathrm{X}_{2}=\mathrm{x}_{2}\right) \stackrel{d}{\underline{d}}\left(\mathrm{U}_{1}+\mathrm{V}_{1}\right)$, where $\mathrm{U}_{1} \sim \mathrm{~B}\left(\mathrm{n}-\mathrm{x}_{2}, \frac{p_{12}}{p_{1}+p_{12}}\right), \quad \mathrm{V}_{1} \sim \mathrm{~B}\left(\mathrm{x}_{2}, \frac{p_{12}}{p_{2}+p_{12}}\right)$ and U_{1} is independent of V_{1}.

20(a) Find the cgf of power series distribution. Hence obtain the recurrence relation satisfied by the cumulants.
(b) Let X_{1} and X_{2} be two independent Normal variables with the same variance. State and prove a necessary and sufficient condition for two linear combinations of X_{1} and X_{2} to be independent.
21. (a) If X follows IG (μ, λ), then prove that $\left((X-\mu)^{2}\right) /\left(\mu^{2} X\right)$ follows $\chi^{2}(1)$.
(b) Show that mean $>$ median $>$ mode for a Log-Normal distribution.
22. (a) Derive the mgf of $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ at $\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)$, when $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \sim \operatorname{BVN}\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$.
(b) Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$ be independent normal variables such that $\mathrm{E}\left(\mathrm{X}_{1}\right)=1, \mathrm{E}\left(\mathrm{X}_{2}\right)=3$, $\mathrm{E}\left(\mathrm{X}_{3}\right)=2$ and $\mathrm{V}\left(\mathrm{X}_{1}\right)=2, \mathrm{~V}\left(\mathrm{X}_{2}\right)=2, \mathrm{~V}\left(\mathrm{X}_{3}\right)=3$. Verify the independence of the following pairs:
(i) $\mathrm{X}_{1}+\mathrm{X}_{2}$ and $\mathrm{X}_{1}-\mathrm{X}_{2}$
(ii) $\mathrm{X}_{1}+\mathrm{X}_{2}-2 \mathrm{X}_{3}$ and $\mathrm{X}_{1}-\mathrm{X}_{2}+2 \mathrm{X}_{3}$
(iii) $2 \mathrm{X}_{1}+\mathrm{X}_{3}$ and $\mathrm{X}_{2}-\mathrm{X}_{3}$.
\$\$\$\$\$\$\$

