LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS

SECOND SEMESTER - APRIL 2016
ST 2502/ST 2501/ST 2500 - STATISTICAL MATHEMATICS - I

Date: 23-04-2016
Time: 01:00-04:00
Dept. No. \square
$\underline{\text { PART - A }}$

Answer ALL questions:

1. Define function.
2. Define convergent.
3. Define absolute convergence.
4. Define pgf of random variable.
5. Define Rolle 's Theorem.
6. Define Taylor's expansion of a function about $\mathrm{x}=\mathrm{a}$.
7. Define orthogonal vectors.
8. What is meant by linear dependence.
9. Define orthogonal matrix.
10. Define positive definite matrix.

PART - B

Answer any FIVE questions:
11. Prove that the sequence $\left\{\left(1+\frac{1}{n}\right)^{n}\right\}_{n=1}^{\infty}$ is convergent.
12. State and prove the ratio test.
13. State and prove Rolle 's Theorem.
14. A continuous random variable has the pdf given by $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}k x(1-x) ; 0<x<1 \\ 0 \quad \text { otherwise }\end{array}\right.$.

Determine the constant k and also obtain mean and variance.
15. If $\mathrm{A}=\frac{1}{3}\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1\end{array}\right]$ then show that A is an orthogonal matrix.
16. Find the MGF of the random variable whose moments are $\mu_{r}^{\prime}=(r+1)!2^{r}$.
17. Find the rank of the matrix $A=\left[\begin{array}{lll}1 & 5 & 6 \\ 0 & 0 & 0 \\ 2 & 4 & 5\end{array}\right]$.
18. Prove that $E[E(X / Y)]=\mathrm{E}(\mathrm{X})$.

PART - C

Answer any TWO questions:
19. a) Show that every bounded sequence is a convergent.
b) For the joint distribution $f(\mathrm{x}, \mathrm{y})=\left\{\begin{array}{cc}\frac{9}{4}-x-y ; 0 \leq x \leq 2 ; 0 \leq y \leq 2 \\ 0 ; & \text { elsewhere }\end{array}\right.$. Obtain the marginal and conditional distribution.
20. a) State and prove Mean value Theorem.
b) If $y=\frac{x}{\sqrt{1+x^{2}}}$, prove that $x^{3} \frac{d y}{d x}=y^{3}$.
(10 Marks)
21. A random variable X has the following probability function.

X	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{x})$	0	K	2 k	2 k	3 k	k^{2}	$2 \mathrm{k}^{2}$	$7 \mathrm{k}^{2}+\mathrm{k}$

i) Find k
ii) Evaluate a) $\mathrm{P}(\mathrm{X}<6)$ b) $\mathrm{P}(0<\mathrm{X}<5)$
iii) If $\mathrm{P}(\mathrm{X} \leq \mathrm{k})>\frac{1}{2}$, find the minimum value of k
iv) Determine the distribution function of X .
22. a) Given $f(\mathrm{x}, \mathrm{y})=\left\{\begin{array}{cc}x e^{-x(1+y)}, x \geq 0, y \geq 0 \\ 0 ; & \text { Otherwise }\end{array}\right.$. Find $\mathrm{E}(\mathrm{XY})$ and $\mathrm{E}(y / x)$. Show that $\mathrm{E}(\mathrm{Y})$ does not exist.
b) Find the inverse of the matrix $A=\left[\begin{array}{ccc}2 & -1 & 4 \\ 4 & 0 & 2 \\ 3 & -2 & 7\end{array}\right]$.

