LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS

SECOND SEMESTER - APRIL 2016
ST 2504 - DISCRETE DISTRIBUTIONS

Date: 23-04-2016
Time: 01:00-04:00

PART-A

Answer ALL the questions:

1. When do we say that the two random variables X and Y are stochastically independent?
2. State any two properties of Joint distribution function.
3. Write down the conditions which satisfy the Bernoulli trials.
4. In a binomial distribution consisting of 5 independent trials, probabilities of 1 and 2 successes are 0.4096 and 0.2048 are respectively. Find the parameter 'p' of the distribution.
5. State the conditions in which the Poisson distribution is a limiting case of binomial distribution.
6. Write any 4 evidences for which Poisson distribution can be employed.
7. Define geometric distribution.
8. What is the value of ' r ' when Negative binomial distribution converted in to a geometric distribution?
9. On what conditions the hyper geometric distribution tends to binomial distribution
10. Define Multinomial distribution.

PART - B

Answer any FIVE questions:
11. For the joint probability distribution of two random variables X and Y , find (i) $\mathrm{P}(\mathrm{X} \leq 1, \mathrm{Y}=2)$
(ii) $\mathrm{P}(\mathrm{X} \leq 1)$ (iii) $\mathrm{P}(\mathrm{Y} \leq 3)$ and (iv) $\mathrm{P}(\mathrm{X}<3, \mathrm{Y} \leq 4)$

X	Y	1	2	3	4	5
6						
0	0	0	$1 / 32$	$2 / 32$	$2 / 32$	$3 / 32$
1	$1 / 16$	$1 / 16$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$
2		$1 / 32$	$1 / 32$	$1 / 64$	$1 / 64$	0

12. A Multiple Choice test consists of 8 questions with 3 answers to each question (of which only one is correct). A student answers each question by rolling a balanced die and checking the first answer if he gets 1 or 2 , the second answer if he gets 3 or 4 and the third answer if he gets 5 or 6 . To get a distinction, the student must secure atleast 75% correct answers. If there is no negative marking, what is the probability that the student secures a distinction?
13. Derive the MGF of binomial distribution. Hence find Mean and Variance.
14. Show that in Poisson distribution with unit mean, mean deviation about mean is (2/e) times the standard deviation.
15. Prove that the sum of independent Poisson variates is also a Poisson variate.
16. Fit a Poisson distribution to the following data:

X	0	1	2	3	4	5	6	7	8
Freq.	56	156	132	92	37	22	4	0	1

17. State and Prove the lack of Memory property of Geometric distribution.
18. Derive the MGF of Mulitnomial distribution.

PART - C

Answer any TWO questions:
19. The joint probability distribution of X and Y is given below :

X		-1
Y		
0		$1 / 8$
1		$2 / 8$

Find the (i) $\mathrm{E}(\mathrm{X})$ and $\mathrm{E}(\mathrm{Y})$ (ii) $\mathrm{E}(\mathrm{XY})$ (iii) Covariance of X, Y (iv) the correlation between X and Y . 20. Obtain the recurrence relation of binomial distribution. Hence find Mean and variance.
21. (a) Prove that the Poisson distribution as a limiting case of a binomial distribution.
(b) Suppose that the number of telephone calls coming into a telephone exchange between 10 am and 11 am , say, X_{1} is a random variable with Poisson distribution with parameter 2. Similarly the number of calls arriving between 11 am and 12 noon, say, X_{2} has a Poisson distribution with parameter 6. If X_{1} and X_{2} are independent, what is the probability that more than 5 calls come in between 10 am and 12 noon?
22. (a) Derive the mean and variance of Hyper geemetric distribution.
(b) The trinomial distribution of two random variables X and Y is given by
$f(x, y)=\frac{n!}{x!y!(n-x-y)} \times p^{x} q^{y}(1-p-q)^{n-x-y}$
for $\mathrm{x}, \mathrm{y}=0,1,2, \ldots \ldots . \mathrm{n}$ and $\mathrm{x}+\mathrm{y}<\mathrm{n}$, where $0 \leq \mathrm{p} \leq 1$ and $0 \leq \mathrm{q} \leq 1$.
(i) Find the marginal distribution of X and Y .
(ii) Find the conditional distribution of X and Y and obtain (a) $E(Y X=x)$ and (b) $E(X Y=y)$.

