LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc. DEGREE EXAMINATION - STATISTICS

SECOND SEMESTER - APRIL 2016
ST 2814-ESTIMATION THEORY

Date: 16-04-2016
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

SECTION - A

Answer ALL the questions

(10 x $2=20$)

1. Give an example to prove that an unbiased estimator need not be unique.
2. State the different approaches to identify UMVUE
3. Define Sufficient Statistic.
4. Let X be random variable with pmf: $P(X=1)=\frac{\theta}{2} \quad, \quad P(X=2)=1-\frac{\theta}{2}$. Find the Fishers Information contained in X ?
5. Find which one of the following is ancillary when a random sample X_{1}, X_{2} is drawn from $N(\mu, 1)$.
(a) $\mathrm{X}_{1} / \mathrm{X}_{2}$
(b) $X_{1}+X_{2}$
(c) $X_{1}-X_{2}$
(d) $2 X_{1}-X_{2}$
6. Let $X_{i} \sim N\left(\mu, \sigma^{2}\right), i=1,2, \ldots, n, \quad \mu \in R, \quad \sigma>0$. Show that CRLB for estimating μ^{2} is $\frac{4 \mu^{2}}{n}$.
7. Explain the concept of likelihood function.
8. What is exponential class of family?
9. Suggest an MLE for $P[X=0]$ in the case of $P(\theta), \theta>0$.
10. Define CAN estimator.

SECTION - B

Answer any FIVE questions

11. State and Prove a necessary and sufficient condition for an estimator to be UMVUE using uncorrelatedness approach.
12. If δ_{0} be a fixed member of U_{g}, then prove that $U_{g}=\left\{\delta_{0}+u \mid u \in U_{0}\right\}$.
13. Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ be a random sample of size n from $U[0, \theta], \theta>0$. Find the Sufficient Statistic for θ.
14. Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ be a random sample from $N\left(0, \theta^{2}\right)$. Obtain the Cramer - Rao lower bound for estimating θ^{2}.
15. Show that the family of $B(n, \theta), 0<\theta<1$ is Complete.
16. Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ be a random sample of size n from $P(\theta), \theta>0$. Obtain MVBE of θ and suggest MVBE of $a \theta+b$, where a and b are constants such that $a \neq 0$.
17. State and Establish Basu's theorem
18. Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ be a random sample from $N(\mu, 1), \mu \in R$. Let μ have the prior distribution $N(0,1)$. Find the Bayes estimator of μ.

SECTION - C

19. (a) Let X be a discrete r.v. with $P(x ; \theta)=\left\{\begin{array}{cl}\theta & , x=-1 \\ (1-\theta)^{2} \theta^{x} & , x=0,1,2, \ldots\end{array}\right.$

Find all the unbiased estimators of 0 .
(b) Let $X_{i} \sim U(0, \theta), \theta>0, i=1,2, \ldots, n$. Find UMVUE of $\frac{n}{n+1} \theta$
20. (a) Explain completeness and boundedly completeness with an illustration.
(b) State and establish Lehmann-Scheffe theorem.
(10+10)
21. (a) Let $\left(X_{i}, Y_{i}\right), i=1,2, \ldots, n$ be a random sample from ACBVE distribution with pdf

$$
f(x, y)=\{(2 \alpha+\beta)(\alpha+\beta) / 2\} \exp \{-\alpha(x+y)-\beta \max (x, y)\}, x, y>0
$$

Find MLE of α and β.
(b) MLE is not consistent - Support the statement with an example.
22. (a) "Blind use of Jackknife method" - Illustrate with an example.
(b) Explain Baye's estimation with an example.

