LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

SECOND SEMESTER - APRIL 2016

SECTION – A

ST 2814 - ESTIMATION THEORY

Date: 16-04-2016 Time: 01:00-04:00 Dept. No.

Max.: 100 Marks

Answer ALL the questions

 $(10 \times 2 = 20)$

- 1. Give an example to prove that an unbiased estimator need not be unique.
- 2. State the different approaches to identify UMVUE
- 3. Define Sufficient Statistic.

4. Let X be random variable with pmf: $P(X = 1) = \frac{\theta}{2}$, $P(X = 2) = 1 - \frac{\theta}{2}$. Find the Fishers

Information contained in X?

- 5. Find which one of the following is ancillary when a random sample X1, X2 is drawn from $N(\mu, 1)$.
 - (a) X1/X2 (b) X1+X2 (c) X1 X2 (d) 2X1-X2
- 6. Let $X_i \sim N(\mu, \sigma^2)$, i = 1, 2, ..., n, $\mu \in R$, $\sigma > 0$, . Show that CRLB for estimating μ^2 is $\frac{4\mu^2}{\pi}$.
- 7. Explain the concept of likelihood function.
- 8. What is exponential class of family?
- 9. Suggest an MLE for P[X=0] in the case of P(θ), θ >0.
- 10. Define CAN estimator.

Answer any FIVE questions

SECTION - B

(5 x 8 = 40)

- 11. State and Prove a necessary and sufficient condition for an estimator to be UMVUE using uncorrelatedness approach.
- 12. If δ_0 be a fixed member of U_g , then prove that $U_g = \{\delta_0 + u \mid u \in U_0\}$.
- 13. Let $X_1, X_2, ..., X_n$ be a random sample of size n from $U[0, \theta], \theta > 0$. Find the Sufficient Statistic for θ .
- 14. Let X₁,X₂,...,X_n be a random sample from $N(0,\theta^2)$. Obtain the Cramer Rao lower bound for estimating θ^2 .
- 15. Show that the family of $B(n, \theta)$, $0 < \theta < 1$ is Complete.
- 16. Let X₁,X₂,...,X_n be a random sample of size n from $P(\theta)$, $\theta > 0$. Obtain MVBE of θ and suggest MVBE of $a\theta + b$, where a and b are constants such that $a \neq 0$.
- 17. State and Establish Basu's theorem
- 18. Let $X_1, X_2, ..., X_n$ be a random sample from $N(\mu, 1), \mu \in R$. Let μ have the prior distribution N(0,1). Find the Bayes estimator of μ .

SECTION - C

Answer any TWO questions

19. (a) Let X be a discrete r.v. with $P(x;\theta) = \begin{cases} \theta & ,x = -1 \\ (1-\theta)^2 \theta^x & ,x = 0,1,2,... \end{cases}$ Find all the unbiased estimators of 0.

(b) Let $X_i \sim U(0,\theta), \theta > 0, i = 1,2,...,n$. Find UMVUE of $\frac{n}{n+1}\theta$ (10+10)

20. (a) Explain completeness and boundedly completeness with an illustration.

- (b) State and establish Lehmann-Scheffe theorem.
- 21. (a) Let (X_i, Y_i) , i=1,2,...,n be a random sample from ACBVE distribution with pdf

$$f(x, y) = \{(2\alpha + \beta)(\alpha + \beta)/2\} \exp\{-\alpha(x + y) - \beta \max(x, y)\}, x, y > 0.$$

Find MLE of α and β .

- (b) MLE is not consistent Support the statement with an example. (10+10)
- 22. (a) "Blind use of Jackknife method" Illustrate with an example.
 - (b) Explain Baye's estimation with an example.

 $(2x\ 20=40)$

(10+10)

(10+10)