# LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034



M.Sc. DEGREE EXAMINATION - STATISTICS

THIRD SEMESTER - APRIL 2016

#### ST 3815 - MULTIVARIATE ANALYSIS

| Date: | 25-04-2016  |
|-------|-------------|
| Time: | 09:00-12:00 |

Dept. No.

Max.: 100 Marks

## SECTION - A

# Answer ALL the questions

 $(10 \times 2 = 20)$ 

1. Let X,Y and Z have trivariate normal distribution with null mean vector and Covariance matrix

$$\begin{bmatrix} 2 & 5 & 0 \\ 5 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$
, find the distribution of X+Y.

- 2. Mention any two properties of multivariate normal distribution.
- 3. Write down the characteristic function of a multivariate normal distribution.
- 4. Explain the use of the partial and multiple correlation coefficients.
- 5. Comment on repeated measurements design.
- 6. Describe a) Common factor and b) Communality.
- 7. Explain the classification problem into two classes.
- 8. Find the maximum likelihood estimates of the  $2\times1$  mean vector  $\mu$  and  $2\times2$  covariance matrix
  - $\Sigma$  based on random sample  $X' = \begin{pmatrix} 6 & 8 & 10 & 8 \\ 12 & 8 & 14 & 14 \end{pmatrix}$  from a bivariate population.
- 9. Outline the use of Discriminant analysis.
- 10. Write a short note on data mining.

#### PART-B

## **Answer anyFIVE questions**

(5X8=40 marks)

- 11. Find the multiple correlation coefficient between  $X_1$  and  $X_2, X_3, ..., X_p$ . Prove that the conditional variance of  $X_1$  given the rest of the variables cannot be greater than unconditional variance of  $X_1$ .
- 12. Derive the characteristic function of multivariate normal distribution.
- 13.Let  $X_1, X_2, ..., X_n$  be independent  $N(0, \sigma^2)$  random variables. Show that  $(X'AX)/\sigma^2$  is chi-square if A is idempotent where  $X = (X_1, X_2, ..., X_n)'$ .
- 14. Obtain the linear function to allocate an object to one of the two given normal populations.
- 15.Let  $X \sim N_p(\mu, \Sigma)$ . If  $X^{(1)}$  and  $X^{(2)}$  are two subvectors of X, obtain the conditional distribution of  $X^{(1)}$  given  $X^{(2)}$ .
- 16. Giving suitable examples explain how factor scores are used in data analysis.

17.Let  $(X_i,Y_i)'$  i = 1,2,3 be independently distributed each according to bivariate normal with mean vector and covariance matrix as given below. Find the joint distribution of the six variables. Also find the joint distribution of  $\overline{X}$  and  $\overline{Y}$ .

Mean Vector: 
$$(\mu, \tau)'$$
, covariance matrix:  $\begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix}$ .

18. Prove that the extraction of principal components from a dispersion matrix is the study of characteristic roots and vectors of the same matrix.

### PART-C

# Answer anyTWO questions

 $(2 \times 20 = 40 \text{ marks})$ 

- 19. Derive the distribution function of the generalized  $T^2$  Statistic.
- 20.a) Define generalized variance.
  - b) Show that the sample generalized variance is zero if and only if the rows of thematrix of deviation are linearly dependent.
  - c) Find the covariance matrix of the multinormal distribution which has the quadratic form  $2x_1^2 + x_2^2 + 4x_3^2 x_1x_2 2x_1x_3$ . (3+12+5)
- 21.a) Outline single linkage and complete linkage clustering procedures with an example.
  - b) If  $X \sim N_p(\mu, \Sigma)$  then prove that  $Z = DX \sim N_p(D\mu, D\Sigma D')$  where D is qxp matrix rank q≤p. (10+10)
- 22.a) Let  $Y \sim N_p(0,\Sigma)$ . Show that  $Y\Sigma^{-1}Y$  has  $\chi^2$  distribution.
  - b) Prove that under some assumptions (to be stated), variance covariance matrix can be written as  $\Sigma = LL' + \Psi$  in the factor analysis model. Also discuss the effect of an orthogonal transformation. (10+10)

\*\*\*\*\*\*