LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS

SECOND SEMESTER - APRIL 2022
PST 2501 - ESTIMATION THEORY

Date: 15-06-2022
Time: 09:00 A.M. - 12:00 NOON

SECTION -A

Answer ALL the questions .
(10 x 2 = 20 Marks)

1. Let $\mathrm{X}_{1}, \mathrm{X}_{2},, \mathrm{X}_{\mathrm{n}}$ be i.i.d. $\mathrm{N}(0, \theta), 0<\theta<\infty$. Obtain a sufficient statistic for θ.
2. Define Uniformly Minimum Risk Unbiased Estimator.
3. List the methods used to find UMVUE.
4. Define Fishers information.
5. Prove that $\left\{\mathrm{N}\left(0, \sigma^{2}\right), \sigma^{2}>0\right\}$ is not complete.
6. State Lehmann-Scheffe theorem.
7. Show that Poisson distribution belongs to exponential family.
8. Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}$ denote a random sample of size n from $\mathrm{U}[0, \theta], \theta>0$.Obtain M.L.E of θ.
9. Define CAN estimator and provide an example.
10. Write a note on Bootstrap method.

SECTION-B

Answer any FIVE questions

(5 x $8=40$ Marks)
11. Let $\mathrm{Y}_{1}<\mathrm{Y}_{2}<\mathrm{Y}_{3}$ be the order statistics of a random sample of size 3 from the uniform distribution having pdf $\mathrm{f}(\mathrm{x} ; \theta)=1 / \theta, 0<\mathrm{x}<\infty, 0<\theta<\infty$, zero elsewhere.
Show that $4 \mathrm{Y}_{1}, 2 \mathrm{Y}_{2}$ and $4 / 3 \mathrm{Y}_{3}$ are all unbiased estimators of θ. Further find the variance of each of these unbiased estimators.
12. Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}$ denote a random sample of size n from $\mathrm{N}\left(\mu, \sigma^{2}\right), \mu \in \mathrm{R}$ and $\sigma^{2}>0$. Obtain sufficient statistic for (i) μ when σ^{2} is known (ii) σ^{2} when μ is known and (iii) $\left(\mu, \sigma^{2}\right)$ when μ and σ^{2} are unknown.
13. Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}$ be a random sample of size n from $\mathrm{b}(1, \theta), 0<\theta<1$.
(a) Find Cramer-Rao Lower Bound for estimating θ.
(b) Show that sample mean is a Minimum Variance Bound Estimator of θ.
14. (a) State and prove Rao-Blackwell theorem.
(b) Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}$ be a random sample with the common $\operatorname{pdf} \mathrm{f}(\mathrm{x} ; \theta)=\theta^{-1} \exp (-\mathrm{x} / \theta)$ for $\mathrm{x}>0$, zero elsewhere. Determine the UMVUE of $1 / \theta$.
15. (a) Show with an example that MLE is not sufficient.
(b) Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}$ be a random sample from $\mathrm{N}(\theta, 1), \theta \in \mathrm{R}$. Find a consistent estimator for θ.
16. (a) Establish the invariance property of CAN estimator.
(b) Find CAN estimator of $\exp (-\theta)$ in the case of $\mathrm{P}(\theta), \theta>0$.
17. Let $\mathrm{X} \sim \mathrm{U}(0, \theta), \theta>0$. Assume that the prior distribution of θ is $\mathrm{h}(\theta)=\theta \exp (-\theta), \theta>0$.

Find Bayesian estimator of θ if loss function is
(a) squared error and (b) absolute error.
18. (a) When is a distribution said to belong to exponential family?
(b) Show that $\{\mathrm{N}(\theta, 1), \theta \in R\}$ is complete.

SECTION-C

Answer any TWO questions.
19. (a) State and prove the necessary and sufficient condition for an estimator to be UMVUE using uncorrelated approach.
(b) If $\delta_{1}{ }^{*}$ is a UMVUE and $\delta_{2}{ }^{*}$ is bounded UMVUE then show that $\delta_{1}{ }^{*} . \delta_{2}{ }^{*}$ is also UMVUE.
20. Prove that MLE is not consistent.
21. (a) Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample from $N(\theta, 1), \theta \in R$. Show that sample mean and variance are independent using Basu's theorem.
(b) Establish invariance property of MLE and illustrate with an example.
22. (a) Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample from $b(1, \theta) ; 0<\theta<1$ and θ follows beta distribution of first kind with parameters α and β. Find Bayes' estimator of θ when loss is squared error.
(b) Let Y have a binomial distribution in which $\mathrm{n}=20$ and $\mathrm{p}=\theta$. The prior probabilities of θ are $\mathrm{P}(\theta=0.3)=2 / 3$ and $\mathrm{P}(\theta=0.5)=1 / 3$. If $\mathrm{y}=9$, what are the posterior probabilities for $\theta=0.3$ and $\theta=0.5$?
(c) Explain Jackknife method.

\$\$\$\$\$\$\$

