LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

SECOND SEMESTER – APRIL 2022

PST 2501 – ESTIMATION THEORY

Date: 15-06-2022 Dept. No. Time: 09:00 A.M. - 12:00 NOON

Answer ALL the questions.

SECTION -A

(10 x 2 = 20 Marks)

Max.: 100 Marks

1. Let X_1, X_2, X_n be i.i.d. $N(0, \theta)$, $0 \le \theta \le \infty$. Obtain a sufficient statistic for θ .

2. Define Uniformly Minimum Risk Unbiased Estimator.

3. List the methods used to find UMVUE.

4. Define Fishers information.

5. Prove that {N(0, σ^2), $\sigma^2 > 0$ } is not complete.

6. State Lehmann-Scheffe theorem.

7. Show that Poisson distribution belongs to exponential family.

8. Let $X_1, X_2, ..., X_n$ denote a random sample of size n from U[0, θ], $\theta > 0$.Obtain M.L.E of θ .

9. Define CAN estimator and provide an example.

10. Write a note on Bootstrap method.

SECTION-B

Answer any FIVE questions

11. Let $Y_1 \le Y_2 \le Y_3$ be the order statistics of a random sample of size 3 from the uniform distribution having pdf $f(x;\theta) = 1/\theta$, $0 \le x \le \infty$, $0 \le \theta \le \infty$, zero elsewhere. Show that $4Y_1$, $2Y_2$ and 4/3 Y_3 are all unbiased estimators of θ . Further find the variance of each of these

Show that $4Y_1$, $2Y_2$ and 4/3 Y_3 are all unbiased estimators of θ . Further find the variance of each of unbiased estimators.

12. Let $X_1, X_2, ..., X_n$ denote a random sample of size n from N(μ, σ^2), $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Obtain sufficient statistic for (*i*) μ when σ^2 is known (ii) σ^2 when μ is known and (iii) (μ, σ^2) when μ and σ^2 are unknown. (3+2+3)

- 13. Let $X_1, X_2, ..., X_n$ be a random sample of size n from $b(1,\theta)$, $0 < \theta < 1$.
 - (a) Find Cramer-Rao Lower Bound for estimating θ .

(b) Show that sample mean is a Minimum Variance Bound Estimator of θ .

14. (a) State and prove Rao-Blackwell theorem.

(b) Let $X_1, X_2, ..., X_n$ be a random sample with the common pdf $f(x;\theta) = \theta^{-1} \exp(-x / \theta)$ for x > 0, zero elsewhere. Determine the UMVUE of $1/\theta$.

15. (a) Show with an example that MLE is not sufficient.

(b) Let $X_1, X_2, ..., X_n$ be a random sample from $N(\theta, 1)$, $\theta \in \mathbb{R}$. Find a consistent estimator for θ . (4)

(5 x 8 = 40 Marks)

(6)

(2)

(4)

(4)

(4)

16 (a) Establish the invariance property of CAN estimator (4)	
(i) Eval CAN estimation from (0) in the area of $\mathbf{P}(0)$, $0 \ge 0$ (4)	
(b) Find CAN estimator of $exp(-\theta)$ in the case of $P(\theta), \theta > 0.$ (4)	
17. Let X~ U(0, θ), θ > 0. Assume that the prior distribution of θ is h(θ) = $\theta \exp(-\theta)^{2}$, θ > 0.	
Find Bayesian estimator of θ if loss function is	
(a) squared error and (b) absolute error. (4+4)	
18. (a) When is a distribution said to belong to exponential family ? (2)	
(b) Show that $\{N(\theta,1), \theta \in R\}$ is complete. (6)	
SECTION-C	
Answer any TWO questions.(2 x 20 = 40 Marks)	
19. (a) State and prove the necessary and sufficient condition for an estimator to be UMVUE using uncorrelated approach. (14)	
(b) If δ_1^* is a UMVUE and δ_2^* is bounded UMVUE then show that $\delta_1^* \cdot \delta_2^*$ is also UMVUE. (6)	
20. Prove that MLE is not consistent.	
21. (a) Let $X_1, X_2,, X_n$ be a random sample from $N(\theta, 1)$, $\theta \in \mathbb{R}$. Show that sample mean and variance are independent using Basu's theorem. (12)	
(b) Establish invariance property of MLE and illustrate with an example. (8)	
22. (a) Let $X_1, X_2,, X_n$ be a random sample from $b(1, \theta)$; $0 < \theta < 1$ and θ follows beta distribution of first kind with parameters α and β . Find Bayes' estimator of θ when loss is squared error. (10)	
(b) Let Y have a binomial distribution in which $n = 20$ and $p = \theta$. The prior probabilities of θ are $P(\theta = 0.3) = 2/3$ and $P(\theta = 0.5) = 1/3$. If $y = 9$, what are the posterior probabilities for $\theta = 0.3$	
and v = 0.5 (0)	
(c) Explain Jackknife method . (4)	

\$\$\$\$\$\$\$\$