LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

SECOND SEMESTER – APRIL 2022

PST 2502 – TESTING STATISTICAL HYPOTHESES

Date: 17-06-2022 Dept. No. Time: 09:00 AM - 12:00 NOON

SECTION – A

Answer ALL the Questions. Each carries 2 marks.

- 1. Distinguish between simple and composite hypotheses.
- 2. What is the difference between the level and size of the test?
- 3. Let β denote the power of a most powerful test of level α for testing simple hypothesis H₀ against simple alternative H₁. Prove that $\beta \ge \alpha$.
- 4. Define Multiparameter Exponential Family.
- 5. What are nuisance parameters and how do you deal with them?
- 6. Define Unbiased test.
- 7. When do we say that a test ϕ has Neyman Structure?
- 8. What is maximal invariant function?
- 9. Briefly explain the principles of LRT.
- 10. Give an example of a group with location changes.

SECTION – B

$(5 \times 8 = 40)$

Max.: 100 Marks

(10 x 2 = 20)

Answer any FIVE Questions. Each carries 8 marks.

- 11. Let X₁, X₂, ..., X_n be iid B(1,p) random variables. Find the Most powerful test function of level α for testing H_0 : $p = p_0$ Vs H_1 : $p = p_1$ ($p_1 > p_0$).
- 12. (a) Define Monotone Likelihood Ratio.(b) Give an example for Non exponential family of distribution possessing MLR property.
- 13. Let X₁, X₂, ..., X_n be a random sample from N(θ , 1). Show that UMP level α test does not exist for testing H₀: $\theta = \theta_0$ Vs H_1 : $\theta \neq \theta_0$
- 14. Explain the need of bounded completeness to prove that similar tests have a Neyman structure?
- 15. Let X₁, X₂, ..., X_n be a random sample from N(μ, σ^2) $\sigma > 0$ Derive UMPUT for H₀: $\sigma = \sigma_0$ ($\sigma^2 = \sigma_0^2$)Vs H₁: $\sigma \neq \sigma_0$, ($\sigma^2 \neq \sigma_0^2$). Discuss the case when n=4, $\sigma_0 = 1, \alpha = 0$.
- 16. Explain Locally most powerful test. Establish the condition to obtain the LMPT.
- 17. Let $X_1, X_2, ..., X_n$ be iid $N(\mu, \sigma^2)$, Find the shortest length confidence interval for μ with level 1- α based on a minimal sufficient statistic.
- 18. If $X \sim P(\lambda_1)$ and $Y \sim P(\lambda_2)$ and are independent, then compare the two Poisson populations through UMPUT for $H_0: \lambda_1 \le \lambda_2$ versus $H_1: \lambda_1 > \lambda_2$, by taking random sample from $P(\lambda_1)$ and $P(\lambda_2)$ of sizes 'm' and 'n' respectively.

SECTION – C

Answer any TWO Questions. Each carries 20 marks.

- 19. State and prove the necessary and sufficient conditions of fundamental Neyman Pearson lemma.
- 20. (a)Let $X_1, X_2, ..., X_n$ be the random sample of size n from N(0, σ^2), σ >0. For testing H₀: $\sigma \leq \sigma_0$ Vs

H₁: $\sigma > \sigma_0$. Derive UMPT with level α . Examine whether the test is consistent.

- (b) Consider the (k+1) parameter exponential family. Derive the conditional UMPU level α test for testing $H_0: \theta \le \theta_0$ against $H_1: \theta > \theta_0$.
- 21. (a) Let $X_1, X_2, ..., X_n$ be a random sample from U (0, θ) $\theta > 0$. Show that there exist a UMP level α test for H₀: $\theta = \theta_0$ Vs H_1 : $\theta \neq \theta_0$.

(b)Let $X_1, X_2, ..., X_n$ be a random sample from $N(\mu_1, \sigma^2)$ and $Y_1, Y_2, ..., Y_n$ be a random sample from $N(\mu_2, \sigma^2)$. Derive an unconditional UMPUT of size- α for testing $H_0: \mu_2 - \mu_1 \le 0$ Vs $H_1: \mu_2 - \mu_1 \ge 0$

- 22. (a) Derive a likelihood ratio test for testing H₀: μ = μ₀ Vs H₁: μ ≠ μ₀ when a random sample of size n is drawn from N(μ, σ²).
- 23. (b)Let $X_1, X_2 \sim \text{iid random sample } H_0:X_1, X_2 \text{ are iid } N(\mu, 1)\mu \in R$,

 $H_1: X_1, X_2$ are iid C(μ , 1), Cauchy with location μ . Find UMPIT w.r.t the group of translations.

aaaaaa