LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

SECOND SEMESTER – APRIL 2022

PST 2503 – SAMPLING THEORY

Date: 20-06-2022 Dept. No. Time: 09:00 AM - 12:00 NOON

SECTION – A

Answer ALL Questions. Each carries TWO marks.

- 1. Distinguish between Population and Sample. What are the assumptions made about population size?
- 2. Define (i) parameter and (ii) statistic. Give an example for both.
- 3. Explain the two types of Probability Sampling Designs giving an example for each type.
- 4. Explain unbiasedness of a statistic under a given sampling design.
- 5. Explain first order and second order inclusion probabilities.
- 6. Show that $E_p[s_{xy}] = S_{xy}$, where P(.) is SRSWOR design.
- 7. Under Balanced Systematic Sampling, prove that the expansion estimator is equal to the population total when linear trend is present in the population.
- 8. List all possible Modified Systematic Samples when n = 8 and N = 40.
- 9. Show that regression estimator Y_{LR} is more efficient than ratio estimator Y_R for estimating population total unless $\beta = R$.
- 10. Explain the purpose of using stratified sampling.

SECTION – B

Answer any FIVE Questions. Each carries EIGHT marks.

- 11. Describe the unit drawing mechanism under simple random sampling design and establish that this mechanism implements the design.
- 12. Verify if Lahiri's method of selecting sample is a PPS selection method.
- 13. Compare the efficiency of Y_{LSS} with that of Y_{SRS} when the population is linear.
- 14. In LSS, when the population is linear, obtain Yates's corrected estimator for estimating population total without error.
- 15. Explain Warner's randomized response technique and obtain the estimate of Π_A .
- 16. For a sample of size n = 2, obtain the true variance of Desraj estimator Y_{DR} .
- 17. In Centered Systematic Sampling, verify that the usual expansion estimator is unbiased for the population total when the population is linear.
- 18. Show that the ratio estimator Y_{R} is not unbiased for Y and hence obtain its approximate Bias and Mean Square Error.

(10 x 2 = 20 Marks)

 $(5 \times 8 = 40 \text{ Marks})$

Max.: 100 Marks

SECTION – C

	Ans	wer any TWO questions. Each carries TWENTY marks.	(2 x 20 = 40 Marks)
19.	(a)	Suppose from a sample of n units selected using SRS, a subsample of n' units is selected using SRS and added to the original sample. Derive the	
		expected value and approximate sampling variance of $\frac{1}{Y}$, the sample mean	
		based on $(n + n')$ units. For what value of the fraction n'/n , does the	
		efficiency of $\frac{A}{Y}'$ compared to that of $\frac{A}{Y}$ attains its maximum value?	(14)
	(b)	State the unit drawing mechanism for Midzuno Sampling Design and show th the mechanism implements the design.	at (6)
20.	(a)	In Midzuno sampling design, obtain the formula for Π_i and Π_{ij} .	(10)
	(b)	For any sample size n, find an unbiased estimator of the variance of Desraj	
		estimator \hat{Y}_{DR} .	(10)
21.	(a)	Describe Two Phase Sampling. Assuming samples are drawn using SRS	
		in both the phases of sampling, suggest \hat{X} , \hat{Y} and \hat{X}_d when (i) the second phase sample is a sub-sample of the first phase sample. (ii) the second phase sample is independent of the first phase sample. Derive	
		$V(\hat{X}), V(\hat{Y}), V(\hat{X}_d), Cov(\hat{X}, \hat{Y}), Cov(\hat{X}, \hat{X}_d)$, and	
		Cov (\dot{Y}, \dot{X}_{d}) in the second case.	(12)
	(b)	Under Stratified Sampling, explain proportional allocation for a given	
		cost. Deduce $V(Y_{St})$ under proportional allocation assuming SRS is used in all the strata.	(8)
22.		Under PPSWR sampling, check that Hansen- Hurwitz estimator \hat{Y}_{HHE}	
		is unbiased for Y. Derive $V(Y_{HHE})$ and hence obtain its unbiased estimator.	(20)
@@@@@@@@			