LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

FOURTH SEMESTER – APRIL 2022

PST 4501 – APPLIED EXPERIMENTAL DESIGNS

Date: 15-06-2022 Dept. No. Time: 01:00 PM - 04:00 PM

Answer ALL the Questions

PART – A

- 1. Define contrast and provide an example.
- 2. What is interaction effect? And provide the expression to determine the interaction effect between A and B in a 2² Factorial design.
- 3. Provide an example where two way blocking is required.
- 4. Provide any one advantage and disadvantage of a fractional factorial design.
- 5. Explain the term "Generator" and "aliases" in factorial experiments.
- 6. Define Balanced Incomplete Block Design.
- 7. Provide second order response surface model and state its uses.
- 8. Define Orthogonal Latin Square Design and state its uses.
- 9. Define Partially Balanced Incomplete Balanced Design.
- 10. Define Split Plot design with an example.

PART – B

Answer any FIVE Questions

- 11. Explain the following basic principles of Experimental designs with example:
 - a) Randomization b) Replication and c) Local control.
- 12. Explain the statistical model of a Randomized Block Design and derive the various sum of squares along with the layout of ANOVA table.
- 13. Explain the analysis of variance for a 2^3 Factorial design.
- 14. Construct a 2³ design layout such that AB is confounded in replicate 1, AC is confounded in replicate 2, BC is confounded in replicate 3, and ABC is confounded in replicate 4 by using the table of algebraic signs
- 15. Construct a design for 2⁵ factorial experiments in 2³ plots per block confounding interaction ABD and ACE using modulus sum method
- 16. If N =(n_{ij}) is the incidence matrix of a BIBD with parameters (v,b,r,k, λ) then show that i) NN' = (r- λ) I + λ J ii) |NN'| = rk(r- λ)^{v-1} where I is the unit matrix of order v and J is a v x v matrix all of whose elements are unity
- 17. Discuss analysis of covariance(ANCOVA) in detail
- 18. The fitted second order response surface design is given by

 $Yield = 79.94 + 0.99X_1 + 0.52X_2 - 1.38X_1^2 - X_2^2 + 0.25X_1X_2$

Where $X_1 = (\delta_1 - 85)/5$ and $X_2 = (\delta_2 - 175)/5$

Identify the point of stationarity and estimate the fitted response value at the point of stationarity

Max.: 100 Marks

(5x8=40 Marks)

PART – C

Answer any TWO Questions

19. a) Derive the main effects and interaction effects for a 2^2 design using dummy coding procedure and effect coding procedure and explain the advantage of effect coding procedure over dummy coding procedure in modeling factorial experiments.

- b) Show that 2^2 design is D-optimal
- 21. Fit a first order response surface design for the following data and identify the path of steepest ascent

X_1	30	30	40	40	35	35	35	35	35
X_2	150	160	150	160	155	155	155	155	155
Y	39.3	40	40.9	41.5	40.3	40.5	40.7	40.2	40.6

22. a) Explain the following design types associated with second order response surface						
i) Circumscribed	ii) Face Centered	iii) Inscribed				
b) Discuss Resolution III, IV and V designs with an example for each design						
c) Discussion the use of resolution design IV and V in screening process						

aaaaaa