LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS
 SECOND SEMESTER - APRIL 2022
 UST 2302 - MATHEMATICAL STATISTICS

(21 BATCH ONLY)

Date: 27-06-2022
Dept. No. \square Max. : 100 Marks

SECTION A				
Answer ALL the Questions				
1.	Define the following		(5 x	= 5)
a)	Distribution function of a random variable.		K1	CO1
b)	Geometric distribution.		K1	CO1
c)	Gamma distribution.		K1	CO1
d)	t- Distribution.		K1	CO1
e)	Order Statistics.		K1	CO1
2.	Fill in the blanks		($5 \times 1=5$)	
a)	The range of Pearson's coefficient of correlation is		K1	CO1
b)	Mean and variance of Poisson distribution are		K1	CO1
c)	The Moment generating function of the normal distribution is		K1	CO1
d)	The test statistic for t is		K1	CO1
e)	The sample variance is ___		K1	CO1
3.	Match the following		($5 \times 1=5$)	
a)	If X and Y are independent if and only if $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})$	$\frac{1}{\theta} \text { and } \frac{1}{\theta^{2}}$	K2	CO1
b)	Hypergeometric Distribution	Continuous	K2	CO1
c)	Mean and Variance of exponential distribution are	0	K2	CO1
d)	Gamma Distribution	Discrete	K2	CO1
e)	Uniform Distribution	$f(x)=\frac{1}{b-a} ; a \leq x \leq b$	K2	CO1
4.	TRUE or FALSE		($5 \times 1=5$)	
a)	In probability, a real-valued function, defined over the sample space of a random experiment, is called a random variable.		K2	CO1
b)	The mean of Hypergeometric distribution is $\frac{n}{N}$.		K2	CO1
c)	In Gamma distribution, mean and variance are different.		K2	CO1
d)	The d.f for related or paired sample t test is $\mathrm{n}-1$.		K2	CO1
e)	F test is used to test for equality of variances from two normal populations.		K2	CO1

SECTION B

Answer any TWO of the following in 100 words														($2 \times 10=20$)	
5.	Calculate coefficient of correlation from the following data.													K3	CO 2
		X 45	55	56		58	60	65	68	70	75	80	85		
		Y 56	50	48		60	62	64	65	70	74	82	90		
6.	A random variable x has the following probability distribution													K3	CO 2
		x	-2	-1	0	1	,	3							
		$\mathbf{P}(\mathbf{x})$	0.1	k 0	0.2	2k	0.3	,							
	a) Compute the value of k b) Compute $\mathrm{P}(\mathrm{x}<2)$ c) Compute $\mathrm{P}(-2<\mathrm{x}<2)$														
7.	Show that, Mean $=\frac{q}{p}$ and variance $=\frac{q}{p^{2}}$													K3	CO 2
8.	Demonstrate Chi square distribution and point out its applications and find its MGF.													K3	CO 2
SECTION C															
Answer any TWO of the following in 100 words														$\mathbf{2} \times 10=20)$	
9.	State and prove Chebyshev's inequality.													K4	CO3
10.	A manufacturer of pins knows that, 2% of the products are defective. If he sells pins in boxes of 100 and guarantees that not more than 4 pins will be defective. a) What is the probability that a box will fail to that guaranteed quantity? b) Compute $\mathrm{P}(\mathrm{x}=0)$ and $\mathrm{P}(\mathrm{x} \leq 2)$													K4	CO3
11.	Point out the moments of beta distribution of first kind and hence find its mean and variance.													K4	CO3
12.	a) Explain F distribution and give the F -test statistic. b) The mean weekly sales of soap bars in departmental stores was 146.3 bars per store. After an advertising campaign the mean weekly sales in 22 stores for a typical week increased to $153 \cdot 7$ and showed a standard deviation of $17 \cdot 2$. Was the advertising campaign successful?													K4	CO 3

SECTION D

Answer any ONE of the following in 250 words
13. Two random variables X and Y have the following joint probability $\mathrm{K} 5 \mid \mathrm{CO} 4$ density function,

$$
f(x, y)=f(x)=\left\{\begin{aligned}
2-x-y, & 0 \leq x<1 \\
& 0 \leq y<1 \\
0, & \text { otherwise }
\end{aligned}\right.
$$

Infer the results of,
(i) The marginal probability density function of X and Y
(ii) Conditional density function of X and Y
(iii) Variance of X and Y
(iv) Covariance between X and Y
14. a) Let X be normally distributed with mean 8 and standard deviation 4.
Evaluate:
i) $\mathrm{P}(5 \leq \mathrm{X} \leq 10)$
ii) $\mathrm{P}(\mathrm{X} \leq 5)$
iii) $\mathrm{P}(\mathrm{X} \geq 15)$

SECTION E

Answer any ONE of the following in $\mathbf{2 5 0}$ words
15. State and prove the central limit theorem.

16. | a) Derive the mgf of Poisson distribution and hence find its m |
| :--- |
| variance. |
| b) The table given below shows the data obtained during outb |
| pox. |
| \qquad Attacked Not Attacked
 Vaccinated 31 469
 Not Vaccinated 185 1315 |$>=$

Test the effectiveness of vaccination in preventing attack from small pox. Test at 5% level of significance.

