LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

PART – A

B.Sc. DEGREE EXAMINATION – **STATISTICS**

FOURTH SEMESTER – **APRIL 2022**

UST 4501 – ESTIMATION THEORY

Date: 16-06-2022 Dept. No. Time: 09:00 AM - 12:00 NOON

Answer ALL the Questions.

- 1. Define Parameter and Statistic.
- 2. When is an estimator said to be Consistent?
- 3. Define Sufficient Statistic.
- 4. How will you find efficiency in estimation?
- 5. Define UMVUE.
- 6. What do you understand by completeness of family of distributions?
- 7. Define Least square estimator.
- 8. Define Posterior Distributions.
- 9. What is Interval estimation?
- 10. Define Confidence limits.

PART – B

Answer Any FIVE Questions.

(5 x 8 = 40 Marks)

- 11. State and prove the sufficient condition for an estimator to be consistent.
- 12. Let X_1 , X_2 ,, X_n be a random sample from a uniform population on $[0,\theta]$. Find a sufficient estimator for θ .
- 13. State and prove Lehmann Scheffe theorem.
- 14. Describe the method of moments. Find method of moment estimators of the normal parameters μ and σ^2 .
- 15. Define Confidence limits. Obtain $100(1 \alpha)$ % confidence interval for difference between means.
- 16. X_1 , X_2 and X_3 is a random sample of size 3 from a population with mean value μ and variance σ^2 . T_1
 - , T_2 , T_3 are the estimators used to estimate mean value μ , where $T_1 = X_1 + X_2 X_3$, $T_2 = 2X_1$

+3X₃ - 4X₂ and T₃ =
$$\frac{1}{3}(\lambda X_1 + X_2 + X_3)/3$$

- (i) Are T_1 and T_2 unbiased estimators?
- (ii)Find the value of λ such that T₃ is unbiased estimator for μ .
- 17. Let X_1 , X_2 ,, X_n denote a random sample from the Bernoulli density $f(x/\theta)=\theta^x(1-\theta)^{1-x}$ for x=0,1, Assume that the prior distribution is uniformly distributed over the interval (0,1). Find the posterior Bayes estimator of θ .
- 18. State and prove factorization theorem.

Max. : 100 Marks

(10 x 2 = 20 Marks)

PART – C	
Answer Any TWO Questions.	(2 x 20 = 40 Marks)
19. (a) State all the properties of M.L.E.	(10 Marks)
(b) State and Prove Cramer Rao Inequality.	(10 Marks)
20. (a) Let X_1, X_2, \ldots, X_n be a random sample from Bernoulli distribution	(10 Marks)
$f(x,\theta)=\theta^{x} (1-\theta)^{1-x}$; x=0,1 Find the complete sufficient statistic for θ . (b) Derive the asymptotic confidence interval for proportion.	(10 Marks)
21. (a) State and prove Rao Blackwell theorem.	(10 Marks)
(b) Prove that for Cauchy's distribution not sample mean but sample media of the population mean.	an is a consistent estimator (10 Marks)
22. (a) Obtain Confidence interval for ratio of variances of two normal populations.	(10 Marks)
(b) Write short notes on (i) Mean-square Error (b) Biased estimators.	(10 Marks)

*aaaaaa*a