LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

Date: 03/11/2014

B.Sc. DEGREE EXAMINATION - STATISTICS

THIRD SEMESTER - NOVEMBER 2014

ST 3506 - MATRIX AND LINEAR ALGEBRA

Time : 09:00-12:00

SECTION A

Answer ALL the questions.
(10 X $2=20$ Marks)

1. Define a diagonal matrix with an example.
2. Show with an example that $\mathrm{AB}=0$ does not imply $\mathrm{A}=0$ or $\mathrm{B}=0$
3. Define minor and cofactor of an element in a matrix.
4. Find the value of $\left|\begin{array}{cc}x^{2} & 1 \\ 2 & x^{2}\end{array}\right|$
5. If $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ find A^{-1}.
6. Define linearly dependent vectors.
7. State any two properties of rank of matrices.
8. Define Basis of a vector space.
9. Define a linear transformation.
10. Show that if λ is an eigen value of A, then λ^{2} is an eigen value of A^{2}.

SECTION B

Answer any FIVE questions.
11. Prove that if A and B are symmetric matrices, then $A B$ is symmetric if and only if $\mathrm{AB}=\mathrm{BA}$.
12. Show that if A and B commute, then every power of A commutes with every power of B.
13. Show that the set $\mathrm{V}=\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)^{\prime} \mid \mathrm{x}_{1}+\mathrm{x}_{2}=0, \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{R}\right\}$ is a vector space over R . Identify a basis for this space.
14. Prove that every vector in a vector space can be uniquely represented as a linear combination of the vectors in a basis of that space.
15. Show that the system of equations $\mathbf{A} \boldsymbol{x}=\boldsymbol{b}$ has a solution if and only if $\operatorname{Rank}(\mathrm{A})=\operatorname{Rank}(\mathbf{A} \vdots \boldsymbol{b})$.
16. Show that

$$
\left|\begin{array}{cccc}
0 & a & b & c \\
a & 0 & c & b \\
b & c & 0 & a \\
c & b & a & 0
\end{array}\right|=\left|\begin{array}{cccc}
0 & 1 & 1 & 1 \\
1 & 0 & c^{2} & b^{2} \\
1 & c^{2} & 0 & a^{2} \\
1 & b^{2} & a^{2} & 0
\end{array}\right|
$$

17. Find the characteristic roots and vectors of $\left[\begin{array}{ll}1 & 6 \\ 1 & 2\end{array}\right]$.
18. Show how the product of two matrices is related to the composition of Linear Transformations.

SECTION C

Answer any TWO questions

19. (a) Prove that every square matrix is uniquely expressible as the sum of symmetric and a skew symmetric matrix.
(b) Show that the only type of square matrix that commutes with every other square matrix is the scalar matrix.
20. (a) Show that $\mathrm{A} \cdot \operatorname{adj}(\mathrm{A})=|\mathrm{A}|$ I. Hence show that $|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{\mathrm{n}-1}$.
(b) Prove that $\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|=2(a+b+c)^{3}$.
21. (a) Find the inverse of the matrix given below using method of partitioning:

$$
\left[\begin{array}{rrrr}
0 & 0 & 1 & 2 \\
1 & -2 & 2 & 8 \\
1 & -1 & 3 & 14 \\
0 & 1 & 2 & 7
\end{array}\right]
$$

(b) Find the rank of the matrix given below:

$$
\left[\begin{array}{rrrr}
1 & 3 & 4 & 2 \tag{15+5}\\
2 & 4 & 6 & 2 \\
-1 & 5 & 4 & 6
\end{array}\right]
$$

22. (a) State and prove Cayley-Hamilton Theorem
(b) Using Cayley-Hamilton Theorem, find the inverse of $\left[\begin{array}{rrr}1 & 2 & 4 \\ -2 & 3 & 0 \\ 3 & -1 & 0\end{array}\right]$
