LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER - NOVEMBER 2016

16PST1MC02 / ST 1821 - APPLIED REGRESSION ANALYSIS

Date: 04-11-2016
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

SECTION - A: ANSWER ALL QUESTIONS

$$
\left(X^{\prime} X\right)^{-1}=\left[\begin{array}{ccc}
25 & 219 & 10,232 \\
219 & 3,055 & 133,899 \\
0,232 & 133,899 & 6,725,688
\end{array}\right] \text { and } X^{\prime} Y=\left[\begin{array}{c}
559.60 \\
7,375.44 \\
337,072.00
\end{array}\right]
$$

2 Define PRESS statistics and R2 prediction based on PRESS.
3 Write the linear transformation for
4 What do you mean by indicator variable?
5 Mention any two criteria for evaluating subset in regression model building.
$6 \quad n_{i n d}$ out condiv number anveladition indi k es of the \qquad trix from the following: $\lambda_{1}=4.2048, \quad \lambda_{2}=2.1626, \quad \lambda_{3}=41.1384, \lambda_{4}=0.000_{0}^{x \prime x} \mathrm{ma}$
7 What do you mean by hierarchIcal regression model?
8 Write down least square normal equations for nonlinear regression model \qquad
9 Explain the term auto correlation.
10 Explain AR (1) process.

SECTION - B: ANSWER ANY FIVE QUESTIONS

11 A model wit \quad ords was buil \quad re the Y values were 1.7, 3.5, 2.9, 3.1, 2.5 and the data
 Matrix.
12 In multiple regression modelling, give rough graphical illustrations of the different possible scenarios when the residuals are plotted against the predicted values. Describe how these are used for model modification
13 Explain the Box-Cox class of power transformations and describe the practical method of choosing the power.
14 Following are the part of output obtained in the singular values analysis and variance decomposition proportions were carried out to detect Multicollinearity.

Eigen	Singular	Conditio	Variance decomposition proportions				
values	values	n indices	intercept	X_{1}	X_{2}	X_{3}	X_{4}
2.63287	1.622612	-	-	0.0568	0.0329	0.0036	0.0049
1.03335	-	1.96214	0.0001	0.1473	0.0696	0.1159	-
-	0.778287	2.084852	0.0032	0.6325	0.0869	-	0.0027
-	-	2.300062	0.0001	-	0.1074	0.2196	0.2105
0.00093	0.00496	-	0.9964	0.0588	-	0.0205	0.6645

Fill up the missing entries and identify the variables entangled in collinear relationship.

15 What are the points to be considered in fitting a polynomial regression model?
16 Define the term interaction effect and illustrate with an example. How the interaction effect of two categorical variables is captured by the coefficient of product term?
17 Describe 'Unit Root Test' for stationarity of a time-series.
18 Give a brief note about 'Ridge Regression' with example.

SECTION - C: ANSWER ANY TWO QUESTIONS

19 a) Following are the multiple linear regression model output using excel:
Out put1: ANOVA

	df	SS	MS	F	Significance F
Regression	2	21.60055651	10.80028	32.87837	0.000276
Residual	7	2.299443486	0.328492		
Total	9	23.9			

Output 2:

Intercept
Miles Travelled
No. of Deliveries
Output 3:
S=0.57314

Coefficients	Stand. Error	t Stat	P-value	Lower	Upper
-0.8687014	0.951547725	-0.9129	0.39163	-3.1187	1.3813
0.06113459	0.009888495	6.18239	0.00045	0.03775	0.0845
0.92342536	0.221113461	4.17625	0.00415	0.40057	1.4462

Write down the multiple regression model and Provide interpretation for (i) Model coefficients (ii) Overall significance of the model fit (iii) Significance of the individual regression coefficient and (iv) interpret R-square (Travel time in hours is response variable)
19 b) Explain Studentized Residuals and externally studentized Residuals.
20 a) Explain Non-parametric regression through 'Kernel Smoothing' and list out any two kernel functions.
20 b) Explain spline regression with an example.
21 a) What are the various methods of diagnosing multicollinearity and recommend the methods for removing it
21 b) Given the following information for fitting a regression model with 4 regressors. Use forward selection method to build a regression model.

$\mathrm{SS}_{\mathrm{T}}=2715.7635$	$\mathrm{SS}_{\text {Res }}\left(\mathrm{x}_{1}, \mathrm{X}_{3}\right)=1227$	$\mathrm{SS}_{\text {Res }}\left(\mathrm{x}_{1}, \mathrm{X}_{2}, \mathrm{X}_{4}\right)=47.9$
$\mathrm{SS}_{\text {Res }}\left(\mathrm{x}_{1}\right)=1265.6867$	$\mathrm{SS}_{\text {Res }}\left(\mathrm{x}_{1}, \mathrm{X}_{4}\right)=74.76$	$\mathrm{SS}_{\text {Res }}\left(\mathrm{x}_{1}, \mathrm{X}_{3}, \mathrm{X}_{4}\right)=50.8$
$\mathrm{SSRes}^{\left(\mathrm{x}_{2}\right)}$) 906.3363	$\mathrm{SS}_{\text {Res }}\left(\mathrm{X}_{2}, \mathrm{X}_{3}\right)=415.4$	$\mathrm{SS}_{\text {Res }}\left(\mathrm{x}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}\right)=73.8$
$\mathrm{SS}_{\text {Res }}\left(\mathrm{X}_{3}\right)=1939.4$	$\mathrm{SS}_{\text {Res }}\left(\mathrm{X}_{2}, \mathrm{X}_{4}\right)=868.8$	$\operatorname{SSRes}_{\text {Res }}\left(\mathrm{x}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}\right)=47.86$
$\mathrm{SS}_{\text {Res }}\left(\mathrm{x}_{4}\right)=883.87$	$\mathrm{SS}_{\text {Res }}\left(\mathrm{X}_{3}, \mathrm{X}_{4}\right)=175.7$	
$\operatorname{SSRes}^{\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)}=57.9$	$\operatorname{SSRes}^{\left(\mathrm{x}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right)}=48.1$	

22 a) Define the Durbin-Watson statistics to test for first order autocorrelation in the error terms of a model. Apply it to the following series of time ordered residuals obtained by least square for a model with three regresssors:

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l}
\hline 4.818 & -10.364 & 4.454 & -0.727 & 4.091 & -1.092 & -6.272 & 3.546 & 8.364 & -6.818 \\
\hline
\end{array}
$$

The relevant DW bound are given to be $\mathrm{dL}=0.34$ anddU $=1.733$
22 b) Explain the Box-Jenkins methodology of ARIMA modelling.

