LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

FIRST SEMESTER – NOVEMBER 2016

16PST1MC02 / ST 1821 - APPLIED REGRESSION ANALYSIS

Date: 04-11-2016 Time: 01:00-04:00 Dept. No.

Max.: 100 Marks

SECTION – A: ANSWER ALL QUESTIONS

1 Find the regre ssion $coefficient and also write down the multipline regre ssion from the following <math>(_{X'X})^{-1} = \begin{bmatrix} 25 & 219 & 10,232 \\ 219 & 3,055 & 133,899 \\ 10,232 & 133,899 & 6,725,688 \end{bmatrix}$ and $X'Y = \begin{bmatrix} 7,375.44 \\ 337,072.00 \end{bmatrix}$

- 2 Define PRESS statistics and R² prediction based on PRESS.
- 3 Write the linear transformation for
- 4 What do you mean by indicator variable?
- 5 Mention any two criteria for evaluating subset in regression model building.
- 6 r_{ind} out condition number and condition indices of the sign matrix from the following: $r_{ind} = 4.2048$, $r_{id} = 2.1626$, $r_{id} = 41.1384$, $r_{id} = 0.0057$
- 7 What do you mean by hierarchIcal regression model?
- 8 Write down least square normal equations for nonlinear regression model
- 9 Explain the term auto correlation.
- 10 Explain AR (1) process.

SECTION – B: ANSWER ANY FIVE QUESTIONS

- 11 A model with cords was buile are the Y values were 1.7, 3.5, 2.9, 3.1, 2.5 and the data Matrix was $x = \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and the vector of residuals by computing the 'Hat' Matrix.
- 12 In multiple regression modelling, give rough graphical illustrations of the different possible scenarios when the residuals are plotted against the predicted values. Describe how these are used for model modification
- 13 Explain the Box-Cox class of power transformations and describe the practical method of choosing the power.
- 14 Following are the part of output obtained in the singular values analysis and variance decomposition proportions were carried out to detect Multicollinearity.

Eigen	Singular	Conditio	Variance decomposition proportions					
values	values	n indices	intercept	X ₁	X ₂	X ₃	X4	
2.63287	1.622612	-	-	0.0568	0.0329	0.0036	0.0049	
1.03335	-	1.96214	0.0001	0.1473	0.0696	0.1159	-	
-	0.778287	2.084852	0.0032	0.6325	0.0869	-	0.0027	
-	-	2.300062	0.0001	-	0.1074	0.2196	0.2105	
0.00093	0.00496	-	0.9964	0.0588	-	0.0205	0.6645	

Fill up the missing entries and identify the variables entangled in collinear relationship.

(10 X 2 = 20)

(5 X 8 = 40)

- 15 What are the points to be considered in fitting a polynomial regression model?
- 16 Define the term interaction effect and illustrate with an example. How the interaction effect of two categorical variables is captured by the coefficient of product term?
- 17 Describe 'Unit Root Test' for stationarity of a time-series.
- 18 Give a brief note about 'Ridge Regression' with example.

SECTION – C: ANSWER ANY TWO QUESTIONS

(2 X 20 = 40)

19 a) Following are the multiple linear regression model output using excel: Out put1: ANOVA

	df	SS		MS	F	•	Sign	ificance F	
Regression	2	21.60055	651	10.8002	8 32.87	7837	0.0	000276	
Residual	7	2.299443	486	0.32849	2				
Total	9	23.9							
Output 2:									
		Coefficients	Star	nd. Error	t Stat	P-va	lue	Lower	Upper
Intercept		-0.8687014	0.95	1547725	-0.9129	0.39	163	-3.1187	1.3813
Miles Travelled		0.06113459	0.00	9888495	6.18239	0.00	045	0.03775	0.0845
No. of Deliveries		0.92342536	0.22	1113461	4.17625	0.00	415	0.40057	1.4462
Output 3:									
S= 0.57314		R-square	= 0.9	03788975	Adj, R-:	square	e = 0.8	37630011	
Write down the m	ultip	le regression m	odel	and Provid	de interpre	etatior	n for (i) Model	
							C · · ·		

coefficients (ii) Overall significance of the model fit (iii) Significance of the individual

- regression coefficient and (iv) interpret R–square (Travel time in hours is response variable) 19 b) Explain Studentized Residuals and externally studentized Residuals.
- 20 a) Explain Non-parametric regression through 'Kernel Smoothing' and list out any two kernel functions.
- 20 b) Explain spline regression with an example.
- 21 a) What are the various methods of diagnosing multicollinearity and recommend the methods for removing it
- 21 b) Given the following information for fitting a regression model with 4 regressors. Use forward selection method to build a regression model.

SS _T =2715.7635	$SS_{Res}(x_{1}, x_{3}) = 1227$	$SS_{Res}(x_{1}, x_{2}, x_{4}) = 47.9$
$SS_{Res}(x_1) = 1265.6867$	$SS_{Res}(x_{1,}x_{4}) = 74.76$	$SS_{Res}(x_{1,}x_{3,}x_{4}) = 50.8$
$SS_{Res}(x_2) = 906.3363$	$SS_{Res}(x_{2}, x_{3}) = 415.4$	$SS_{Res}(x_{2}, x_{3}, x_{4}) = 73.8$
$SS_{Res}(x_3) = 1939.4$	$SS_{Res}(x_{2}, x_{4}) = 868.8$	$SS_{Res}(x_{1,}x_{2,}x_{3,}x_{4}) = 47.86$
$SS_{Res}(x_4) = 883.87$	$SS_{Res}(x_{3}, x_{4}) = 175.7$	
$SS_{Res}(x_1, x_2) = 57.9$	$SS_{Res}(x_1, x_2, x_3) = 48.1$	

22 a) Define the Durbin-Watson statistics to test for first order autocorrelation in the error terms of a model. Apply it to the following series of time ordered residuals obtained by least square for a model with three regressors:

4.818 -10.364 4.454 -0.727	4.091 -1.092	-6.272 3.546	8.364 -6.818
----------------------------	--------------	--------------	--------------

The relevant DW bound are given to be dL = 0.34 anddU= 1.733

22 b) Explain the Box-Jenkins methodology of ARIMA modelling.
