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LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034
B.Sc. DEGREE EXAMINATION – STATISTICS

FIRST SEMESTER – NOVEMBER 2016
16UST1MC02/ST 1503 – PROBABILITY AND RANDOM VARIABLES

Date: 07-11-2016 Dept. No. Max. : 100 Marks
Time: 01:00-04:00

Section – A

Answer ALL the questions (10 * 2 = 20)1. What are mutually exclusive events? Give an example.2. Define mathematical definition of probability.3. Four cards are drawn at random from a pack of 52 cards. Find the probability that, they aretwo kings and two queens.4. Explain conditional probability.5. Explain mutually independent events.6. State multiplication law of probability.7. Show that ( ) ( ) ( ).CP A B P A P A B   8. Define a random variable.9. Define probability density function.10. Show that E[a x +b] =  a E(x)+b.
Section – B

Answer any FIVE questions (5 *8 =40)11. If Aand B are independent events, then show that (a) A and B and (b) A and B are alsoindependent.12. An urn contains four tickets marked with numbers 112, 121, 211, 222 and one ticket is drawnat random. Let ,...)3,2,1( iAi be the event that thi digit of the number of the ticket drawn is 1.Discuss the independence of the events 1A , 2A and 3A .13. Three newspapers A , B and C are published in a certain city, it is estimated from a surveythat of the adult population: 20% read A, 16% Read B, 14% read C, * % read A and B, 5% readA and C, 2% read all three. Find what percentage read at least one of the papers?14. From a city population, the probability of selecting (i) a male or a smoker is 7/10, (ii) a malesmoker is 2/5, and (iii) a male, if a smoker is already selected is 2/3. Find the probability ofselecting (a) a non-smoker, (b) a male and (c) a smoker, if a male is first selected.15. State and prove Multiplication law of probability for ‘n’ events.16. Write the properties of distribution function.17. A coin is tossed until a head appears. What is the expectation of the number of tosses required?18. In four tosses of a coin. Let X be the number of heads. Tabulate the 16 possible outcomes withthe corresponding values of X,. By simple counting, derive the probability distribution of X andhence calculate the expected value of X.
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Section – B
Answer any TWO questions (2 *20 =40)19. (a) A bag contains 17 counters marked with the numbers 1 to 17.  A counter is drawn andreplaced; a second drawing is then made.  What is the probability that: (i)  the first numberdrawn is even and the second odd?  (ii)  the first number is odd and the second is even ?(b) A speaks truth 4 out of 5 times. A die is tossed. He reports that there is a six. What is thechance that actually there was six?20. (a) For two events Aand B ;
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P A B   (iii) )()()()()( BPAPBAPAPBAP  .(b) A problem in Statistics is given to three students BA, and C whose chances of solving it are
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1 and respectively.   What is the probability that the problem is solved?21. (a) A box contains 6 red, 4 white and 5 black balls. A person  draws 4 balls from the box atrandom. Find the probability that among the balls drawn there is at least one ball each other.(b) State and prove Baye’s theorem.22. (a) Obtain the mean and variance of the random variable X with pdf f(x) = ,xe  0<x< zeroOtherwise.(b) A random X has the following probability function:Value of
xX , 0 1 2 3 4 5 6 7
)(xp 0 k 2k 2k 3k K2 2k2 7k2+k

(i) Find k , (ii) Evaluate
2
1)()(),6(),6(  aXPiiiPandXPXP , find the minimumvalue of a, and (iv) Determine the distribution function of X .
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