LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

SECOND SEMESTER – NOVEMBER 2016

ST 2814 - ESTIMATION THEORY

Date: 03-11-2016 Time: 01:00-04:00

Answer ALL the questions

Dept. No.

Max.: 100 Marks

PART – A

(10 x 2 = 20)

- 1. Explain the problem of Point estimation.
- 2. Give an example to prove that an unbiased estimator need not be unique.
- 3. Suggest an unbiased estimatorof θ , when arandom sampleX₁, X₂,...,X_ndrawn from U(0, θ).
- 4. If δ is a UMVUE, then show that δ + 2 is also a UMVUE.
- 5. Find which one of the following is ancillary when a random sample X1, X2 is drawn from N(μ ,1).

(a)X1/X2 (b) X1+X2 (c)X1-X2

- 6. State Neyman Fisher Factorization Theorem
- 7. Give an example of a family of distributions which is not complete.
- 8. Define completeness andbounded completeness.
- 9. Suggest an MLEforP[X=0]in the caseofPoisson (θ).
- 10. Explain Jackknife method.

PART- B

Answer anyFIVE questions

11. Let X be a discrete r.v. with $P(x;\theta) = \begin{cases} \theta & , x = -1 \\ (1-\theta)^2 \theta^x & , x = 0,1,2,... \end{cases}$

Find all the unbiased estimators of 0.

- 12.Let X~ N (θ ,1). Obtain the Cramer- Rao lower bound for estimating θ^2 . Compare the variance of the UMVUE with CRLB.
- 13. Let X₁, X₂,...,X_n be a random sample of size n from $N(\mu, \sigma^2)$, $\mu \in \mathbf{R}, \sigma > 0$.

Find Cramer-Rao Lower bound for estimating μ / σ . Compare it with the

variance of UMVUE.

14. If T is sufficient for **P** or θ , then show that one-one function of T is also sufficient for **P** or θ .

Illustrate with an example.

- 15. State and establish Lehmann-Scheffe theorem.
- 16. MLE is not unique Illustrate with an example.
- 17.i. State Cramer-Rao regularity conditions
 - ii. State and prove CR inequality.
- 18. Given a random sample from $B(1,\theta)$, $0 < \theta < 1$, assuming that the prior distribution of θ to be

a beta distribution, find a Baye's estimator of θ with respect to Squared Error loss function.

(5X8=40 marks)

1

(10 v ʻ

(d) 2X1-X2

PART- C	
Answer anyTWO questions	(2 X 20 =40marks)
19.(a) If UMVUE exists for the parametric function $\psi(\theta)$ then show that	t it must be
essentially unique.	
(b)Let X_1, X_2 be a random sample from E(0, σ). Show that (X_1+X_2) as	nd
$X_1 (X_1+X_2)$ are independent using Basu's theorem.	(10+10)
20. (a) Given an example of an MLE which is not CAN.	
(b) Let X_1, X_2, \dots, X_n be a random sample from population having pdf	
$p(x \mid \theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & 0 < x < \infty, \theta > 0 \\ 0, & otherwise \end{cases}$ Obtain MLE of P(X>2)	(10+10)
21 (a) let (X, X) = 12 a be a random sample from ACBVE distribution	
pdf $f(x, y) = \{(2\alpha + \beta)(\alpha + \beta)/2\} \exp\{-\alpha(x + y) - \beta \max(x, y)\},$	x, y > 0.
Find MLE of α and β .	
(b) MLE is not consistent – Support the statement with an example.	. (10+10)
22.(a) "Blind use of Jackknifed method" – Illustrate with an example.	
(b) Explain Baye's estimation with an example.	(10+10)
