LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc. DEGREE EXAMINATION - STATISTICS

SECOND SEMESTER - NOVEMBER 2016
ST 2962-MODERN PROBABILITY THEORY

Date: 14-11-2016
Time: 01:00-04:00
\square Max. : 100 Marks

SECTION A

Answer ALL of the following.

1. Let ζ be the class of all intervals of the form $(x, \infty), x \in R$, considered as subset of the real line. Prove ζ is closed under finite unions and finite intersection, but not under complementation.
2. Define: σ - Algebra.
3. If $X \sim U[a, b]$, then prove that the probability that X lies in the sub interval of (a, b) is proportional to its length.
4. Define: Conditional Probability Space.
5. Define Mixture of Distributions.
6. Explain: Moment Generating functions.
7. Derive the Mean of Beta Distribution of first kind.
8. If $X_{n} \xrightarrow{p} X$, and, $X_{n} \xrightarrow{p} X^{\prime}$, then prove that X and X^{\prime} are equivalent.
9. Define: Convergence Weakly.
10. State the three conditions of WLLN.

SECTION B

Answer any FIVE from the following

$5 \times 8=40$
11. Let ξ_{i} be the class of all intervals of the form $(a, b),(a<b) a, b \in R$, but arbitrary. Then P.T. $\sigma\left(\xi_{i}\right)=B$.
12. Prove that a Field is closed under finite unions. Conversely, a class closed under complementation and finite union is a field.
13. Explain: Induced Probability Space with an example.
14. Prove that Poisson distribution is a limiting case of binomial distribution.
15. State and prove the properties of Expectation of non-negative and arbitrary random variables.
16. State and prove the necessary and sufficient conditions for convergence in probability.
17. Prove that $X_{n} \xrightarrow{r} X \Rightarrow X_{n} \xrightarrow{p} X$. If the X_{n} 's are a.s. bounded, conversely $X_{n} \xrightarrow{p} X \Rightarrow$ $X_{n} \xrightarrow{r} X$ for all r.
18. State and prove the Kolmogorov SLLN for i.i.d. case.

SECTION C

Answer the following

19. i)Prove that the intersection of arbitrary number of fields is a field.
ii) Prove that the distribution function F_{X} of r.v. X is non-decreasing, continuous on the right with
$\mathrm{F}_{\mathrm{X}}(-\infty)=0$ and $\mathrm{F}_{\mathrm{X}}(+\infty)=1$. Conversely, every function F with the above properties is the d.f. of a r.v. on some probability space.
20.i) Let $X_{n} \xrightarrow{p} X, Y_{n} \xrightarrow{p} Y$, then P.T.
a. $\quad a X_{n} \xrightarrow{p} a X$ (a, real number)
b. $\quad X_{n}+Y_{n} \xrightarrow{p} X+Y$
c. $\quad X_{n} Y_{n} \xrightarrow{p} X Y$
d. $X_{n} / Y_{n} \xrightarrow{p} X / Y$ if $\mathrm{P}[\mathrm{Yn}=0]=0$, for every n , and $\mathrm{P}[\mathrm{Y}=0]=0$.
ii) Prove that $X_{n} \xrightarrow{p} X$ implies that $F\left(X_{n}\right) \longrightarrow 0$ for $\mathrm{x}<\mathrm{c}, F\left(X_{n}\right) \longrightarrow 1$ for $\mathrm{x} \geq \mathrm{c}$ and conversely.
20. i) State and Prove Markov's Theorem.
(10)
ii) Prove that $\sum \sigma_{n}^{2}<\infty \Rightarrow>\sum\left(X_{n}-E(X)\right)$ converges a.s. If X_{n} s are a.s bounded, converse is also true and we have, $\sum \sigma_{n}^{2}<\infty \Leftrightarrow \sum\left(X_{n}-E(X)\right)$ converges a.s.
21. i) Discuss in detail, the applications of Central Limit Theorem.
ii)Let $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ be a sequence of i.i.d. r.v.'s with characteristic function $\varphi(\mathrm{u})$. Then prove that

$$
\begin{equation*}
\mathrm{S}_{\mathrm{n}} / \mathrm{n} \xrightarrow{p} \mathrm{E}(\mathrm{X}) \tag{8}
\end{equation*}
$$

