LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS

THIRD SEMESTER - NOVEMBER 2016
ST 3503/ST 3501/ST 3500 - STATISTICAL MATHEMATICS - II

Date: 04-11-2016
Time: 09:00-12:00
Dept. No. \square Max. : 100 Marks

PART - A

Answer ALL questions:
($10 \times 2=20$ marks)

1. Define Riemann integral.
2. Define the lower integral of a function.
3. Define improper integrals.
4. Define a gamma integral.
5. What is meant by change of order of integration?
6. Define variance - covariance matrix.
7. Define Poisson process.
8. Find the order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}-4 \sqrt{\frac{d y}{d x}}=5$.
9. State Cayley Hamilton theorem.
10. Define Eigen roots.

PART - B

Answer any FIVE questions:
11. Prove that if $f \in \mathcal{R}[a, b]$ and λ is any real number then $\lambda f \in \mathcal{R}[a, b]$ and $\int_{a}^{b} \lambda f=\lambda \int_{a}^{b} f$.
12. Prove that the improper integral $\int_{1}^{\infty} \frac{1}{x} d x$ diverges.
13. A continuous random variable X has a pdf given by $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}k x e^{-\lambda x}, & x \geq 0, \lambda \geq 0 \\ 0 ; & \text { Otherwise }\end{array}\right.$. Determine the constant k . Obtain the mean and variance of X .
14. If $y=x(x-3)(x-5)$, then find $\frac{d y}{d x}$.
15. The joint pdf of X and Y is $\mathrm{f}(\mathrm{x}, \mathrm{y})=e^{-(x+y)} \mathrm{x} \geq 0, \mathrm{y} \geq 0$. Find the pdf of $\frac{X+Y}{2}$.
16. If $y=\log \left\{x+\sqrt{a^{2}+x^{2}}\right\}$, then find $\frac{d y}{d x}$.
17. Evaluate $\int_{0}^{1} \frac{x d x}{x+\sqrt{1+x^{2}}}$.
18. Find the characteristic roots of $\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]$.
PART - C

Answer any TWO questions:
19. a) State and prove the fundamental theorem on calculus.
(10 Marks)
b) Prove that $\mathrm{f} \varepsilon \mathcal{R}[\mathrm{a}, \mathrm{b}]$ and $\mathrm{a}<\mathrm{c}<\mathrm{b}$, then $\mathrm{f} \varepsilon \mathcal{R}[\mathrm{a}, \mathrm{c}], * \mathrm{f} \varepsilon \mathcal{R}[\mathrm{c}, \mathrm{b}]$, and $\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f$.
(10 Marks)
20. a) Prove that $\beta(m, n)=\frac{r(m) \Gamma(n)}{r(m+n)}$.
b). Use Laplace transform to solve the initial value problem $y^{\prime \prime}+3 y^{\prime}+2 \mathrm{y}=6 \mathrm{e}^{-\mathrm{t}}, \mathrm{y}(0)=1, y^{\prime}(0)=2$.
(10 Marks)
21. (X, Y) is a two - dimensional random variable with density function

$$
\mathrm{f}(\mathrm{x}, \mathrm{y})=\left\{\begin{array}{cc}
\frac{2}{3}(x+2 y), 0<x<1,0<y<1 \\
0 ; & \text { Otherwise }
\end{array}\right.
$$

Find the conditional mean and conditional variance given $\mathrm{y}=\frac{1}{2}$.
22. a) Solve the system of equations: $5 \mathrm{X}+3 \mathrm{Y}+14 \mathrm{Z}=4, \mathrm{Y}+2 \mathrm{Z}=1, \mathrm{X}-\mathrm{Y}+2 \mathrm{Z}=0$.
b) Find the inverse of the matrix using Cayley's Hamilton theorem $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

