LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **STATISTICS**

FOURTH SEMESTER – NOVEMBER 2016

ST 4503/ST 5504/ST 5500 – ESTIMATION THEORY

Date: 17-11-2016 Time: 01:00-04:00 Dept. No.

Max.: 100 Marks

 $(10 \times 2 = 20)$

 $(5 \times 8 = 40)$

PART A

Answer ALL the questions.

- 1. Suggest a sufficient estimator for θ based on a random sample from Poisson (θ).
- 2. Define statistic.
- 3. State factorization theorem.
- 4. Define completeness.
- 5. Mention any two methods of estimation.
- 6. Define UMVUE.
- 7. Define prior distribution.
- 8. Define confidence interval.
- 9. Is the unbiased estimator unique? Explain.
- 10. State the invariance property of MLE.

PART B

Answer any FIVE questions.

- 11. State and prove Cramer Rao inequality.
- 12. A random sample (X₁, X₂, X₃, X₄, X₅) of size 5 is drawn from a normal population with unknown mean μ . Consider the following estimators to estimate μ .

(i)
$$t_1 = \frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}$$
 (ii) $t_2 = \frac{X_1 + X_2}{2} + X_3$ (iii) $t_3 = \frac{2X_1 + X_2 + \lambda X_3}{3}$

where λ is such that t_3 is an unbiased estimator of μ .

- a) Find λ .
- b) Are t_1 and t_2 unbiased?
- c) Which estimator is the best among t_1 , t_2 and t_3 ?
- 13. Obtain the MLE of θ in $f(x, \theta) = (1 + \theta) x^{\theta}$, 0 < x < 1, based on an independent sample of size n.
- 14. State and prove Lehmann Scheffe theorem.
- 15. Obtain the Bayes estimator of θ from Poisson distribution using a suitable prior distribution.
- 16. Obtain the MVB estimator for μ in normal population N(μ , σ^2), where σ^2 is known.
- 17. What are the regularity conditions for Cramer Rao Inequality? Give an example where the condition is not satisfied.

18. Establish the uniqueness of UMVUE.

PART C

Answer any TWO questions.

 $(2 \times 20 = 40)$

- 19. a) If T is a consistent estimator for θ and if g is a continuous function, then show that g(T) is consistent for $g(\theta)$.
 - b) State and Prove the sufficient conditions for consistency of an estimator.
- 20. a) State and Prove Rao Blackwell theorem.
 - b) Obtain the UMVUE of θ , when a random sample of size n is drawn from b(1, θ)
- 21. a) Discuss the properties of MLE?
 - b) Obtain the MLE of the parameters in N(μ, σ^2), when both the parameters are unknown.
- 22. a) Obtain $100(1 \alpha)$ % confidence interval for the parameter μ of the normal distribution when σ is unknown.
 - b) Obtain the confidence interval for the proportion based on a random sample of size n.

NAll the Best 3