B.Sc. DEGREE EXAMINATION - STATISTICS

SIXTH SEMESTER - NOVEMBER 2016
ST 6607/ST 6604/ST 6601 - OPERATIONS RESEARCH

Date: 15-11-2016
Time: 09:00-12:00
Dept. No. \square Max. : 100 Marks

PART - A
Answer ALL the questions

1. What is linear programming problem?
2. What is a surplus variable?
3. What is the need for artificial variables?
4. What do you mean by decision variables in a LPP?
5. What is a transportation problem?
6. What is an assignment problem?
7. Define the term dummy activity in network analysis.
8. What is Free float?
9. Define saddle point.
10. What is maximin criterion?

> Section - B

Answer Any FIVE questions
11. Give the importance of Operations Research.
12. The ABC manufacturing company can make two products P1 and P2. Each of the product requires time on a cutting machine and a finishing machine. The data is given below:

	Product		Time available
	P1	P2	
Cutting hours (per unit)	2	1	8 hrs.
Finishing hours (per unit)	3	3	12 hrs.
Profit (per unit)	Rs. 6	Rs. 4	
Maximum sales (unit per week)	-	200	

Formulate linear programming problem.
13. Explain the Two Phase method.
14. Solve the following unbalanced assignment problem of minimizing total time for doing all jobs.

Jobs

Operator	1	2	3	4	5
1	6	2	5	2	6
2	2	5	8	7	7
3	7	8	6	9	8
4	6	2	3	4	5
5	9	3	8	9	7
6	4	7	4	6	8

15. A Project consists of 8 jobs A to H with the following precedence and estimates of time. Draw a project network.

Job	A	B	C	D	E	F	G	H
Predecessor	-	-	A, B	A, B	B	D, E	C, F	D, E
Time (days)	$\mathbf{1 5}$	$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{2 0}$	$\mathbf{1 0}$

16. Explain the time estimates in a PERT network.
17. Using the principle of dominance solve the following game:

8	10	9	14
10	11	8	12
13	12	14	13

18. Solve the game theory problem as a LPP.
Section - C

Answer Any TWO questions
19. (a) Explain the different models of Operations Research. (8 marks)
(b) Solve the following LPP graphically.
(12 marks)

$$
\operatorname{Max} Z=2 X_{1}+3 X_{2}
$$

Subject to $\mathrm{x}_{1}+\mathrm{x}_{2}>=30 ; \mathrm{x}_{2}>=3$; $\mathrm{x}_{2}<=12$;

$$
\begin{aligned}
& x_{1}-x_{2}>=0 ; \quad x_{1}<=20 \\
& x_{1}, x_{2}>=0 .
\end{aligned}
$$

20. (a) Solve the following LPP using Big M method. (12 marks)

Maximize $Z=X_{1}+2 X_{2}$
Subject to $\mathrm{X}_{1}-\mathrm{X}_{2}>=3 ; 2 \mathrm{X}_{1}+\mathrm{X}_{2}<=10$

$$
\mathbf{X}_{1}, \mathrm{X}_{2}>=0 .
$$

(b). Write down the importance of studying primal and dual of LPP. (8 marks)
21. Solve the following transportation problem using Vogels method in order to minimize total transportation cost.
(20 marks)
Destinations

Origin	D1	D2	D3	D4	D5	Availabilities
01	3	5	8	9	11	20
02	5	4	10	7	10	40
03	2	5	8	7	5	30
Requirements	10	15	25	30	40	120

22. (a)The following table shows the jobs of a network along with their time estimates.

	Duration in days		
Job	a	m	b
$1-2$	2	7	13
$1-6$	2	5	14
$2-3$	2	14	26
$2-4$	7	5	8
$3-5$	5	5	19
$4-5$	3	8	17
$5-8$	8	3	9
$7-8$		17	32

Draw the project network and find the probability that the project is completed in $\mathbf{4 0}$ days.
(b). Solve the following game whose pay-off matrix is

		Player B		
		1	2	3
Player A	1	4	-1	5
	2	0	5	3
	3	5	3	7

\qquad

