Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

SECTION - A

Answer ALL questions. Each carries TWO marks.
($\mathbf{1 0} \times 2=20$ marks)

1. Write down the formula for s_{n} of the following sequence and give a subsequence of the sequence $1,3,6,10,15, \ldots$.
2. Show that the sequence $\left(\frac{1}{n}\right)$ has the limit $\mathrm{L}=0$.
3. If (s_{n}) is a sequence of real numbers and if $\lim _{n \rightarrow \infty} s_{2 n}=\mathrm{L}$ and $\lim _{n \rightarrow \infty} s_{2 n-1}=\mathrm{L}$, then prove that $\mathrm{s}_{\mathrm{n}} \rightarrow L$ as $n \rightarrow \infty$.
4. Prove that the sequence $\left(\log \frac{1}{n}\right)$ diverges to minus infinity.
5. Test whether the series $\sum \frac{1+n}{1+3 n}$ is convergent or not.
6. State comparison test for the series of positive terms.
7. If f is bounded on A and g is unbounded on A, then prove that $f+g$ is unbounded on A.
8. Give the different formulae for differentiating the sum, and product of two functions f and g which are both differentiable at $\mathrm{x}=\mathrm{a}$ in R .
9. Define upper and lower integral of a bounded function ' f ' on the closed and bounded interval [a, b].
10. Define linear independence or linear dependence of k vectors and give an example.

SECTION - B

Answer any FIVE questions. Each carries EIGHT marks.
11. For any $\mathrm{a}, \mathrm{b} \in \mathrm{R}$, prove that $||\mathrm{a}|-|\mathrm{b}|| \leq|\mathrm{a}-\mathrm{b}|$. Then prove that $\left(\left|\mathrm{s}_{\mathrm{n}}\right|\right)$ converges to $|\mathrm{L}|$ if $\left(s_{n}\right)$ converges to L. Show that the converse is not true.
12. Let $\sum a_{n}$ be a series of non-negative numbers and let $s_{n}=a_{1}+a_{2}+\ldots+a_{n}$. Prove that
(i) $\sum a_{n}$ converges if $\left(\mathrm{s}_{\mathrm{n}}\right)$ is bounded.
(ii) $\sum a_{n}$ diverges if (s_{n}) is not bounded.
13. If $\sum a_{n}$ converges absolutely, then prove that the series $\sum a_{n}$ converges but not conversely.
14. Let $\mathrm{f}(\mathrm{x})=1+\mathrm{x}$ when $\mathrm{x}>1, \mathrm{f}(\mathrm{x})=1-\mathrm{x}$ when $\mathrm{x}<1$ and $\mathrm{f}(\mathrm{x})=0$ at $\mathrm{x}=1$. Find $\lim _{x \rightarrow 1+} f(x), \lim _{x \rightarrow 1^{-}} f(x)$, and $\lim _{x \rightarrow 1} f(x)$.
15. State (i) Extreme-value theorem, (ii) Intermediate value theorem, and (iii) Fixed point theorem for continuous functions on a bounded and closed interval $[\mathrm{a}, \mathrm{b}]$.
16. State Mean Value Theorem for Derivatives. Show by an example that the conclusion of this theorem may fail to be true if there is any point between a and b where the derivative of the function does not exist.
17. Let $\mathrm{f}(\mathrm{x})=\mathrm{x}(0 \leq \mathrm{x} \leq 1)$. Let σ be the partition $\left\{0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1\right\}$ of $[0,1]$. Find $\mathrm{U}[\mathrm{f} ; \sigma]$ and $\mathrm{L}[f ; \sigma]$.
18. If $f \in R[a, b]$ and $g \in R[a, b]$ and if $f(x) \leq g(x)$ almost everywhere on $[a, b]$, then show that $\int_{a}^{b} f \leq \int_{a}^{b} g$.

SECTION - C

Answer any TWO questions. Each carries TWENTY marks.
($2 \times 20=40$ marks)

19(a). Prove that a monotonic sequence converges if and only if it is bounded.

19(b). Prove that the Geometric sequence (x^{n}) converges to 0 if $0<\mathrm{x}<1$ and diverges to infinity if $1<x<\infty$.
20. State and prove the fundamental theorem on alternating series (Leibnitz Rule).

21(a). If $f(x)=x \quad x$ for $x \in R$, then show that $f^{\prime}(x)=2 x$ for every x in R.

21(b). Examine the convergence of the improper integrals of the first kind:
(i) $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ (ii) $\int_{0}^{\infty} e^{-x} d x$ (iii) $\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x$.

22(a). Give a motivation leading to the definition of Taylor series and Maclaurin series for f . State the Taylor's formula with integral form of the remainder.

22(b). Demonstrate the Gram-Schmidt Orthogonalization technique.

