LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS
 FIRST SEMESTER - NOVEMBER 2022

PST1MC01 - ADVANCED DISTRIBUTION THEORY

Date: 23-11-2022
Time: 01:00 PM - 04:00 PM
Dept. No. \square

Max. : 100 Marks

SECTION A			
Answer ALL the Questions			
1	Answer the following / Definitions	(5 $\times 1=5$)	
a)	Write the pdf of truncated Binomial distribution truncated at ' 0 ' and obtain its moment generating function.	K1	CO1
b)	State the difference between distribution function and its probability density function.	K1	CO1
c)	Let $\mathrm{X}_{1}, \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}$ be a random sample from Geometric distribution. Show that first order statistic also has Geometric distribution.	K1	CO1
d)	Define non-central F distribution.	K1	CO1
e)	Define a Quadratic form in n variables.	K1	CO1
2	Answer the following / MCQ/Definitions	5 x	
a)	Show that Geometric distribution satisfies Lack of memory property.	K2	CO1
b)	Let $X_{1}, X_{2}, \ldots X_{n}$ be iid inverse Gaussian random variables, Then prove that the arithmetic mean of $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}$ is also Inverse Gaussian distribution.	K2	CO1
c)	Let $\mathrm{Z}=(\mathrm{X}, \mathrm{Y})$ be a Bivariate Normal random variable. Then, which of the following statements is false? (a) X and Y are independent if and only if they are uncorrelated. (b) $\mathrm{X}+\mathrm{Y}$ is univariate normal. (c) $\mathrm{Y} \mid \mathrm{X}=\mathrm{x}$ is distributed as a Normal random variable. (d) $\mathrm{X}+\mathrm{Y}$ and $\mathrm{X}-\mathrm{Y}$ are independent.	K2	CO1
d)	Write the moment generating function of non central chi square distribution.	K2	CO1
e)	If X follows log-normal then prove that $1 / \mathrm{X}$ is also \log normal.	K2	CO1
SECTION B			
	Answer any THREE of the following in $\mathbf{5 0 0}$ words	($\mathbf{3 \times 1 0}=\mathbf{3 0}$)	
3	The distribution function of random variable X is given by, $F(x)=\left\{\begin{array}{rr} 0 ; & x<2 \\ \frac{2}{3} x-1 ; & 2 \leq x<3 \\ 1 ; & 3 \leq x \end{array}\right.$ Decompose the distribution function. Find the mean and variance.	K3	CO2
4	Let X be a non-negative absolutely continuous random variable, Then X obeys lack of memory property if and only if X is exponential.	K3	CO2
5	Show that mean>median>mode for lognormal distribution.	K3	CO2
6	Derive the pdf of non-central t-distribution.	K3	CO 2
7	(i) State any two differences between central distributions and non-central distributions. (ii) Explain the importance of Compound distributions.	K3	CO 2
SECTION C			
Answer any TWO of the following		$(2 \times 12.5=25)$	
8	Let X follow the power series distribution. Obtain the recurrence relationship for cumulants and hence obtain the mean and variance of Log series distribution.	K4	CO3
9	Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}$ be iid $\mathrm{N}(0,1)$ random variables. Find the distribution of (i) $\mathrm{X}_{1} \mathrm{X}_{2}$	K4	CO3

