LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

FIRST SEMESTER – **NOVEMBER 2022**

PST1MC01 – ADVANCED DISTRIBUTION THEORY

Date: 23-11-2022 Dept. No. Time: 01:00 PM - 04:00 PM

SECTION A						
Answer ALL the Questions						
1	Answer the following / Definitions	(5 x]	l = 5)			
a)	Write the pdf of truncated Binomial distribution truncated at '0' and obtain its moment generating function.	K1	CO1			
b)	State the difference between distribution function and its probability density function.	K1	CO1			
c)	Let $X_1, X_2 X_n$ be a random sample from Geometric distribution. Show that first order statistic also has Geometric distribution.	K1	CO1			
d)	Define non-central F distribution.	K1	CO1			
e)	Define a Quadratic form in n variables.	K1	CO1			
2	Answer the following / MCQ/Definitions	(5 x 1	= 5)			
a)	Show that Geometric distribution satisfies Lack of memory property.	K2	CO1			
b)	Let $X_1, X_2,, X_n$ be iid inverse Gaussian random variables, Then prove that the arithmetic mean of $X_1, X_2,, X_n$ is also Inverse Gaussian distribution.	K2	CO1			
c)	Let $Z = (X, Y)$ be a Bivariate Normal random variable. Then, which of the following statements is false? (a) X and Y are independent if and only if they are uncorrelated. (b) X + Y is univariate normal. (c) Y X = x is distributed as a Normal random variable. (d) X + Y and X - Y are independent.	К2	CO1			
d)	Write the moment generating function of non central chi square distribution.	K2	CO1			
e)	If X follows log-normal then prove that 1/X is also log normal.	K2	CO1			
	SECTION B					
	Answer any THREE of the following in 500 words	(3 x 10	= 30)			
3	The distribution function of random variable X is given by, $F(x) = \begin{cases} 0; & x < 2 \\ \frac{2}{3}x - 1; & 2 \le x < 3 \\ 1; & 3 \le x \end{cases}$	K3	CO2			
	Decompose the distribution function. Find the mean and variance.					
4	Let X be a non-negative absolutely continuous random variable, Then X obeys lack of memory property if and only if X is exponential.	K3	CO2			
5	Show that mean>median>mode for lognormal distribution.	K3	CO2			
6	Derive the pdf of non-central t-distribution.	K3	CO2			
7	 (i) State any two differences between central distributions and non-central distributions. (5) (ii) Explain the importance of Compound distributions. (5) 	К3	CO2			
	SECTION C					
	Answer any TWO of the following(2 x 12.5 = 25)					
8	Let X follow the power series distribution. Obtain the recurrence relationship for cumulants and hence obtain the mean and variance of Log series distribution.	K4	CO3			
9	Let X_1, X_2, X_3, X_4 be jid N(0.1) random variables. Find the distribution of (i) X_1X_2	K4	CO3			

Max. : 100 Marks

		1	1		
	(11) $X_1 X_2 - X_3 X_4$				
10	a) Establish the pdf of Bivariate binomial distribution. (5) b) Let $(X_1, X_2) \sim BB(n, p_1, p_2, p_{12})$ then obtain the mean and variance of X_1 . (7.5)	K4	CO3		
11	Let $X \theta \sim N(\theta, 1)$ and $\theta = 0.1, 0.2, 0.3$ and $\theta \sim DU\{0.1, 0.2, 0.3\}$ known. Find the compound distribution and its Mean.	K4	CO3		
			<u> </u>		
SECTION D					
A	Answer any ONE of the following (1 x 15 = 15)				
12	Let $X_1, X_2,, X_n$ be iid Exponential random variables with parameter λ . Prove that a) $nX_{(1)}$ is exponential with parameter λ . b) $\sum_{i=2}^{n} (X_{(i)} - X_{(1)}) \sim G(\lambda, n - 1)$. c) $X_{(1)}$ is independent of $\sum_{i=2}^{n} (X_{(i)} - X_{(1)})$. (5+5+5)	K5	CO4		
13	Let X follows Inverse Gaussian with parameters (μ , σ^2). Establish the r th cumulants of the inverse Gaussian Distribution and hence obtain the mean and variance.	K5	CO4		
	SECTION E				
	Answer any ONE of the following (1	x 20 =	= 20)		
14	 a) Examine whether the geometric mean of 'n' independent and identically log normal random variables follow log normal. (10) b) Let (X₁, X₂) have Bivariate Binomial with parameters n, p₁, p₂ and p₁₂. Verify whether X1 given X₂=x₂ is equal in distribution to U₁+ V₁ where U₁ and V₁ are independent. Hence Obtain the Correlation Coefficient between X₁ and X₂. (10) 	K6	CO5		
15	a) Let Q_1, Q_2, \dots, Q_k be k quadratic forms in iid $N(0, \sigma^2)$ random variables X_1, X_2, \dots, X_n . Let $X'X = Q_1 + Q_2 + \dots + Q_k$ and $\rho(A_j) = r_j, j = 1, 2, \dots, k$ Then $\sum_{i=1}^k r_j = n$ if and only if (i) Q_1, Q_2, \dots, Q_k are independent. (ii) $\frac{Q_i}{\sigma^2} \sim chi$ square with r_j df $j = 1, 2, \dots, k$. (10) b) Let X_1, X_2 be iid $N(0, \sigma^2)$ random variables. Examine whether i. $X_1 + X_2$ and $(X_1 - X_2)^2$ are independent. ii. $(X_1 + X_2)^2$ and $X_1^2 - X_2^2$ are independent. (10)	K6	CO5		
	@@@@@@@				