LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034 M.Sc. DEGREE EXAMINATION - STATISTICS FIRST SEMESTER - NOVEMBER 2022 PST1MCO2 - APPLIED REGRESSION ANALYSIS			
SECTION - A			
Answer ALL the questions			
1	Fill in the blanks / Answer the following / MCQ/Definition	(5	
a)	If we add a feature in linear regression model and retrain the same model. Which of the following option is true R square? a) If R Squared increases, this variable is significant b) If R Squared decreases, this variable is not significant c) Individually R squared cannot tell about variable importance. We can't say anything about it right now d) None of these	K1	CO1
b)	Multicollinearity refers to a situation in which a) Successive error terms derived from the application of regression analysis to time series data are correlated. b) There is a high degree of correlation between the independent variables included in a multiple regression model. c) The dependent variable is highly correlated with the independent variable(s) in a regression analysis. d) The application of a multiple regression model yields estimates that are nonlinear in form.	K1	CO1
c)	In regression modelling, the impacts of trade-off between under-fitting and overfitting the most can be identified through. a) The polynomial degree b) The weights by matrix inversion or gradient descent c) The use of a constant-term d) None of these	K1	CO1
d)	In a regression analysis if $\mathrm{SSE}=200$ and $\mathrm{SSR}=300$, then the coefficient of determination is a) 0.6667 b) 0.6000 c) 0.4000 d) 1.5000	K1	CO1
e)	The Durbin-Watson statistic is used to test for-------	K1	CO1

	method to build a model with four regressors given the following information on $\mathrm{SS}_{\text {Res }}$ for Use a significance of 5% :$\begin{aligned} & \mathrm{SS}_{\text {Total }}=4752.58, \quad \mathrm{SS}_{\text {Res }}\left(\mathrm{X}_{1}\right)=1546.79, \mathrm{SS}_{\text {Res }}\left(\mathrm{X}_{2}\right)=2214.97, \mathrm{SS}_{\text {Res }}\left(\mathrm{X}_{3}\right)=1586.06, \\ & \mathrm{SS}_{\text {Res }}\left(\mathrm{X}_{4}\right)=3393.95, \mathrm{SS}_{\text {Res }}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)=130.83, \mathrm{SS}_{\text {Res }}\left(\mathrm{X}_{1}, \mathrm{X}_{3}\right)=1520.54, \mathrm{SS}_{\text {Res }}\left(\mathrm{X}_{1}, \mathrm{X}_{4}\right)= \\ & 307.55, \mathrm{SS}_{\text {Res }}\left(\mathrm{X}_{2}, \mathrm{X}_{3}\right)=101.36, \mathrm{SS}_{\text {Res }}\left(\mathrm{X}_{2}, \mathrm{X}_{4}\right)=2147.36, \mathrm{SS}_{\text {Res }}\left(\mathrm{X}_{3}, \mathrm{X}_{4}\right)=727.02, \mathrm{SS}_{\text {Res }}\left(\mathrm{X}_{1},\right. \\ & \left.\mathrm{X}_{2}, \mathrm{X}_{3}\right)=83.97, \mathrm{SS}_{\text {Res }}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{4}\right)=88.97, \mathrm{SS}_{\text {Res }}\left(\mathrm{X}_{1}, \mathrm{X}_{3}, \mathrm{X}_{4}\right)=129.15, \mathrm{SS}_{\text {Res }}\left(\mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}\right) \\ & =84.21, \mathrm{SS}_{\text {Res }}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}\right)=83.76 \end{aligned}$					
13	Choose the Durbin-Watson test to determine whether first-order autocorrelation exists from the following information of OLS residuals:$\begin{array}{lllllllllll} 0.18 & -0.21 & 1.25 & 2.10 & 1.55 & -2.05 & 0.8 & -0.64 & -1.46 & 0.11 & -0.85 \\ -1.44 & 0.58 & -0.08 . & {\left[\text { It is given that } \mathrm{d}_{\mathrm{L}}=1.08, \mathrm{~d}_{\mathrm{U}}=1.36\right]} \end{array}$				K5	CO 4
SECTION - E						
Answer any ONE of the following questions.					($20=20$)	
14	Build the regression mod complete the ANOVA tab	$=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+$ Also comment on your fi	the data give s. Second Prel	below and minary (X2)	K6	CO5
15	Develop the various methods of diagnosing multicollinearity and suggest the methods for removing it.				K6	CO5

@@@@@@

