LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

 $\textbf{M.Sc.} \ \textbf{DEGREE EXAMINATION} - \textbf{STATISTICS}$

FIRST SEMESTER – **NOVEMBER 2022**

PST1MC03 – STATISTICAL MATHEMATICS

Date: 28-11-2022 Time: 01:00 PM - 04:00 PM

Dept. No.

Max.: 100 Marks

SECTION A						
Answer ALL the questions						
1	Define the following.	(5 x	1 = 5)			
a)	Raabe's test	K1	CO1			
b)	Maxima and minima of a function	K1	CO1			
c)	Upper and lower Riemann integrals	K1	CO1			
d)	Basis and Dimension	K1	CO1			
e)	Inner product space	K1	CO1			
2	Fill in the blanks.	$(5 \times 1 = 5)$				
a)	The function $f(x) = x+2 $ is not differentiable at the point	K2	CO1			
b)	$\lim_{n \to \infty} \frac{1}{n} (1 + 2^{\frac{1}{2}} + 3^{\frac{1}{3}} + \dots + n^{\frac{1}{n}}) \text{ is equal to} \$	K2	CO1			
	Let $f(x) = k$ (= constant) on [a,b] and g be monotonically, non-decreasing on [a,b].					
c)	Then $\int_{a}^{b} f dg = $	K2	CO1			
d)	Any subset containing (n+1) vectors of an n-dimensional vector space is linearly	K2	CO1			
e)	A finite dimensional real inner product space is called as	K2	CO1			
	SECTION B					
	Answer any THREE of the following questions. 30)	(3 x 1	0 =			
	Prove that the sequence $\{u_n\}$ defined by $u_1 = \sqrt{7}$, $u_{n+1} = \sqrt{7 + u_n}$ converges to the	17.0				
3	positive root of the equation $x^2 - x - 7 = 0$.	K3	CO2			
4	A function $f(x)$ is defined as follows: $f(x) = \begin{cases} 1 + \sin x & \text{if } 0 < x < \frac{\pi}{2} \\ 2 + \left(x - \frac{\pi}{2}\right)^2 & \text{if } x \ge \frac{\pi}{2} \end{cases}$. Examine its continuity and derivability at $x = \frac{\pi}{2}$.	К3	CO2			
	2					
5	If S, T are two subsets of a vector space V, then prove that (i) $S \subseteq T \Rightarrow L(S) \subseteq L(T)$ (ii) $L(SUT) = L(S) + L(T)$ (iii) $L[L(S)] = L(S)$.	K3	CO2			
6	(i). If $f \in R[a,b]$, then prove that $m(b-a) \le \int_{a}^{b} f(x) dx \le M(b-a)$ if $b \ge a$; where m					
	and M are the infimum and supremum of f on $[a,b]$.	K3	CO2			
	(ii) Let $f(x) = x$ for $x \in [0,1]$ and let $P = \left\{0, \frac{1}{3}, \frac{2}{3}, 1\right\}$ be a partition of $[0,1]$. Compute					
	U(P,f) and $L(P,f)$.					

					
.	$A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & 4 & -2 \\ -1 & -1 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 3 & 2 & -1 \\ 3 & 8 & -3 \\ 3 & 6 & -1 \end{bmatrix}$				
	$A = \begin{bmatrix} 2 & 4 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 8 & -3 \end{bmatrix}$!			
.		<u> </u>			
	SECTION C		-		
	Answer any TWO of the following questions.(2(i).Prove that a sequence is convergent if and only if its a Cauchy sequence.(7+5.5)	<u>, x 12.5</u>	5 = 25)		
	(i). Prove that a sequence is convergent if and only if its a Cauchy sequence. (7+5.5) (ii). Show by applying Cauchy's convergence criterion that the sequence $\{a_n\}$ where	!			
8		K4	CO3		
	$a_n = 1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1}$ is not convergent.	!			
	$\int \frac{3}{\sin(a+1)x + \sin x}$	+1	<u>├</u>		
	Let $f: R \to R$ be such that $f(x) = \begin{cases} \frac{\sin (a+1)x + \sin x}{x} & \text{for } x < 0\\ \frac{c}{x} & \text{for } x = 0\\ \frac{(x+bx^2)^{1/2} - x^{1/2}}{b x^{3/2}} & \text{for } x < 0 \end{cases}$. Determine the	!			
9	$f(x) = \begin{cases} c & \text{for } x = 0 \\ (x + bx^{2})^{1/2} - x^{1/2} \end{cases}$	K4	CO3		
	$\left \frac{(x + bx) - x}{b x^{3/2}} \right \text{for } x < 0$!			
	values of a, b, c for which the function is continuous at $x = 0$.	!			
10	Prove that the set of all ordered n-tuples forms a vector space over a field F.	K4	CO3		
	Determine the characteristic roots and the corresponding characteristic vectors of the $\begin{bmatrix} -2 & 2 & -3 \end{bmatrix}$!			
	matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ and show that the matrix satisfies Cayley Hamilton	TT 4	~~~		
11	matrix $A = \begin{bmatrix} 2 & 1 & -6 \end{bmatrix}$ and show that the matrix satisfies Cayley matrix	K4	CO3		
		!			
	theorem.	<u> </u>			
	SECTION D				
		/1 v 1/	5 = 15)		
) – 1 <i>.</i> ,		
12	Prove that a monotonic sequence is never oscillatory.	K5	CO4		
	(i).State and prove L Hospital Rule for determining the true value of the	l			
	indeterminate form $\frac{0}{0}$. (7+8)		1		
13	/ 0	K5	CO4		
	(ii) Evaluate: (a) $\lim_{x \to 0} \frac{e^x \sin x - x - x^2}{x^2 + x \log(1 - x)}$, (b). $\lim_{x \to 0} x^m (\log x)^n$.		1		
	SECTION E		L		
A		(1 x 2)	0 = 20)		
	(i).Using integral test, test the convergence of the series: (10+10)	<u>`</u>			
	$\sum_{n=3}^{\infty} \frac{1}{n \log n \left(\log \log n\right)^p}, p > 0$	ļ	1		
14	$\sum_{n=3}^{\infty} \overline{n} \log n \; (\log \log n)^p \; , P \geq 0$	K6	CO5		
17	(ii) Reduce the following quadratic forms in three variables to real canonical form	KU			
	and find its rank and signature:	ļ	1		
	$6x_1^2 + 3x_2^2 + 14x_3^2 + 4x_2x_3 + 18x_3x_1 + 4x_1x_2.$		L		
, _]	(i).Given that the set S below spans \mathbb{R}^3 . Find a basis of \mathbb{R}^3 which is contained in S.	K6 (1		
. _	$\{(2,6,-3),(5,15,-8),(3,9,-5),(1,3,-2),(5,3,-2)\}$ (10+10) (ii) Let f and g be two functions. If $\lim_{x \to a} f(x) = t$ and $\lim_{x \to a} g(x) = m$, then prove that		1		
15	(ii) Let f and g be two functions. If $\lim_{x \to a} f(x) = l$ and $\lim_{x \to a} g(x) = m$, then prove that		CO5		
	(a) $\lim_{x \to a} [f(x).g(x)] = lm$ (b) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{l}{m}; m \neq 0$				
l		-	-		
