LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER - NOVEMBER 2022
PST1MC03 - STATISTICAL MATHEMATICS

Date: 28-11-2022
Time: 01:00 PM - 04:00 PM
Dept. No. \square

Max. : 100 Marks

SECTION A			
Answer ALL the questions			
1	Define the following.	($5 \times 1=5$)	
a)	Raabe's test	K1	CO1
b)	Maxima and minima of a function	K1	CO1
c)	Upper and lower Riemann integrals	K1	CO1
d)	Basis and Dimension	K1	CO1
e)	Inner product space	K1	CO1
2	Fill in the blanks.	($5 \times 1=5$)	
a)	The function $f(x)=\|x+2\|$ is not differentiable at the point	K2	CO1
b)	$\lim _{n \rightarrow \infty} \frac{1}{n}\left(1+2^{1 / 2}+3^{1 / 3}+\ldots+n^{1 / n}\right)$ is equal to	K2	CO1
c)	Let $f(x)=k$ (= constant) on $[\mathrm{a}, \mathrm{b}]$ and g be monotonically, non-decreasing on $[\mathrm{a}, \mathrm{b}]$. Then $\int_{a}^{b} f d g=$ \qquad	K2	CO1
d)	Any subset containing ($\mathrm{n}+1$) vectors of an n -dimensional vector space is linearly	K2	CO1
e)	A finite dimensional real inner product space is called as	K2	CO1
SECTION B			
	Answer any THREE of the following questions. 30)	3 $\times 10=$	
3	Prove that the sequence $\left\{u_{n}\right\}$ defined by $u_{1}=\sqrt{7}, u_{n+1}=\sqrt{7+u_{n}}$ converges to the positive root of the equation $x^{2}-x-7=0$.	K3	CO 2
4	A function $f(x)$ is defined as follows: $f(x)=\left\{\begin{array}{cl}1+\sin x & \text { if } 0<x<\frac{\pi}{2} \\ 2+\left(x-\frac{\pi}{2}\right)^{2} & \text { if } x \geq \frac{\pi}{2}\end{array}\right.$ Examine its continuity and derivability at $x=\frac{\pi}{2}$.	K3	CO 2
5	If S , T are two subsets of a vector space V , then prove that (i) $S \subseteq T \Rightarrow L(S) \subseteq L(T)$ (ii) $L(S U T)=L(S)+L(T)$ (iii) $L[L(S)]=L(S)$.	K3	CO 2
6	(i).If $f \in R[a, b]$, then prove that $m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$ if $b \geq a$; where m and M are the infimum and supremum of f on $[\mathrm{a}, \mathrm{b}]$. (ii) Let $f(x)=x$ for $x \in[0,1]$ and let $P=\left\{0, \frac{1}{3}, \frac{2}{3}, 1\right\}$ be a partition of $[0,1]$. Compute $\mathrm{U}(\mathrm{P}, \mathrm{f})$ and $\mathrm{L}(\mathrm{P}, \mathrm{f})$.	K3	CO 2
7	Find the characteristic and minimal polynomials of each of the following matrices	K3	CO 2

	$A=\left[\begin{array}{ccc}3 & 1 & -1 \\ 2 & 4 & -2 \\ -1 & -1 & 3\end{array}\right]$ and $B=\left[\begin{array}{ccc}3 & 2 & -1 \\ 3 & 8 & -3 \\ 3 & 6 & -1\end{array}\right]$		
	SECTION C		
Answer any TWO of the following questions.		$(2 \times 12.5=25)$	
8	(i).Prove that a sequence is convergent if and only if its a Cauchy sequence. (7+5.5) (ii). Show by applying Cauchy's convergence criterion that the sequence $\left\{a_{n}\right\}$ where $a_{n}=1+\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{2 n-1}$ is not convergent.	K4	CO3
9	Let $f: R \rightarrow R$ be such that $f(x)=\left\{\begin{array}{ll}\frac{\sin (a+1) x+\sin x}{x} & \text { for } x<0 \\ c & \text { for } x=0 \\ \frac{\left(x+b x^{2}\right)^{1 / 2}-x^{1 / 2}}{b x^{3 / 2}} & \text { for } x<0\end{array}\right.$. Determine the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ for which the function is continuous at $\mathrm{x}=0$.	K4	CO3
10	Prove that the set of all ordered n -tuples forms a vector space over a field F .	K4	CO3
11	Determine the characteristic roots and the corresponding characteristic vectors of the matrix $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$ theorem.	K4	CO3

SECTION D

SECTION D			
Answer any ONE of the following questions		$(1 \times 15=15)$	
12	Prove that a monotonic sequence is never oscillatory.	K5	CO 4
13	(i).State and prove L Hospital Rule for determining the true value of the indeterminate form $0 / 0$. (ii) Evaluate: (a) $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{e^{x} \sin x-x-x^{2}}{x^{2}+x \log (1-x)}$, (b). $\underset{x \rightarrow 0}{\operatorname{Lt}} x^{m}(\log x)^{n}$.	K5	CO4
SECTION E			
	nswer any ONE of the following questions	(1 x	= 20)
14	(i).Using integral test, test the convergence of the series: $\sum_{n=3}^{\infty} \frac{1}{n \log n(\log \log n)^{p}}, p>0$ (ii) Reduce the following quadratic forms in three variables to real canonical form and find its rank and signature: $6 x_{1}^{2}+3 x_{2}^{2}+14 x_{3}^{2}+4 x_{2} x_{3}+18 x_{3} x_{1}+4 x_{1} x_{2}$	K6	CO5
15	(i).Given that the set S below spans R^{3}. Find a basis of R^{3} which is contained in S . $\{(2,6,-3),(5,15,-8),(3,9,-5),(1,3,-2),(5,3,-2)\}$ (10+10) (ii) Let f and g be two functions. If $\lim _{x \rightarrow a} f(x)=l$ and $\lim _{x \rightarrow a} g(x)=m$, then prove that (a) $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=l m$ (b) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{l}{m} ; m \neq 0$	K6	CO5

