LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS

THIRD SEMESTER - NOVEMBER 2022
PST 3502 - STOCHASTIC PROCESSES

Date: 25-11-2022
Time: 09:00 AM - 12:00 NOON

SECTION - A

Answer ALL the Questions.

$10 \times 2=20$ Marks

1. Define Markov process.
2. State any two properties of periodicity.
3. Show that recurrence is a class property.
4. Write a note on absorption probability in a Markov chain.
5. Write the postulates for a pure birth process.
6. Cite any two examples for renewal process.
7. When a process is called (i) Supermartingale and (ii) Submartingale?
8. Let the Markov chain have the state space $S=\{1,2,3\}$ with the following one-step transition probabilities $\mathrm{P}_{11}=1 / 2, \mathrm{P}_{12}=1 / 4, \mathrm{P}_{13}=1 / 4, \mathrm{P}_{21}=1 / 3, \mathrm{P}_{23}=2 / 3, \mathrm{P}_{31}=1 / 2$ and $\mathrm{P}_{32}=1 / 2$. If $\mathrm{P}\left(\mathrm{X}_{1}=1\right)=\mathrm{P}\left(\mathrm{X}_{1}=2\right)=1 / 8$, find $\mathrm{P}\left(\mathrm{X}_{1}=3, \mathrm{X}_{2}=2, \mathrm{X}_{3}=1\right)$.
9. Explain branching process with an example.
10. Illustrate Stationary process.
SECTION - B

Answer any FIVE Questions.

11. Explain (i) One-dimensional random walk and (ii) Spatially homogeneous Markov chains.
12. (a) Show that communication is an equivalence relation.
(b) State and prove the necessary and sufficient condition for a state of a Markov chain is recurrent.
13. If the Markov chain has the states 1,2 and 3 with the one-step transition probabilities : $\mathrm{P}_{12}=2 / 3, \mathrm{P}_{13}=1 / 3, \mathrm{P}_{21}=\mathrm{P}_{23}=1 / 2, \mathrm{P}_{31}=\mathrm{P}_{32}=1 / 2$, find stationary distribution.
14. Derive $\mathrm{P}_{\mathrm{n}}(\mathrm{t})$ for Poisson process by clearly stating the postulates.
15. Explain (i) Right regular sequences and induced martingales for Markov chains and
(ii) Doob's Martingale process.
16. Narrate Type I counter model in renewal process.
17. Explain branching process with the help of any four probability generating functions.
18. Show that the moving average process is covariance stationary.

SECTION - C

Answer any TWO Questions.
19.(a) Show that two-dimensional random walk is recurrent.
(b) Prove that three-dimensional random walk is transient.
20. (a) State and prove the basic limit theorem of Markov chains.
(b) State and prove the theorem used to find stationary probability distribution when the Markov chain is positive recurrent, irreducible and aperiodic.
21.(a) Derive the backward and forward Kolmogorov differential equations for birth and death process.
(b) State and prove the elementary renewal theorem.
22. Establish the probability generating function relations for branching process and hence derive its mean and variance .

