	LOYOLA COLLEGE (AUTONOMOUS), CHENNAI –	600 034	
K	B.Sc. DEGREE EXAMINATION – STATISTICS		
2	FIRST SEMESTER – NOVEMBER 2022		
Luc	UST 1502 – PROBABILITY AND DISCRETE DISTRIBU	TIONS	
Da Ti	ate: 03-12-2022 Dept. No.	Max. : 100) Marks
	SECTION A]
Def	fine the following.		
1.	Answer the following definitions	(5 x 1	= 5)
a)	Axiomatic probability.	K1	CO1
b)	Multiplicative law of probability.	K1	CO1
c)	Joint probability mass function.	K1	CO1
d)	Covariance.	K1	CO1
e)	Binomial random variable.	K1	CO1
2.	Answer the following MCQ	(5 x 1	= 5)
a)	If A and B are two events, the probability of occurrence of either A or B is give	en K1	CO1
	as		
	a. $P(A)+P(B)$ b. $P(A \cup B)$		
	c. $P(A \cap C)$ d. $P(A)P(B)$		
b)	Given that P(A)=1/3, P(B)=3/4 and P(AUB)=11/12, P(B A) is	K1	CO1
	a. $\frac{1}{2}$ b. $\frac{4}{2}$		
	6 9 c 1 d None of the above		
	$\frac{1}{2}$		
c)	Which is false regarding the distribution function?	K1	CO1
	a. $F(-\infty) = 1$ b. $F(-\infty) = 0$		
	c. $F(\infty) = 1$ d. $X < Y \Rightarrow F(x) < F(y)$		
d)	If X and Y are two random variables, then $Cov[(aX + b), (cY + d)]$ is	K1	CO1
	a. $Cov(X,Y)$ b. $abcd Cov(X,Y)$		
	c. $ac Cov(X,Y)$ d. $bc Cov(X,Y)$		
e)	Name the distribution in which the mean is equal to the variance.	K1	CO1
	a. Binomial b. Bernoulli		
	c. Poisson d. Geometric		

3.	Fill in the blan	ks.							(5 x 1	= 5)
a)	An event consis	ting of o	nly one	outco	me is		•		K2	CO1
b)	If two events A	and B ar	e disjoi	nt, the	n P (A	U B) =	=	•	K2	CO1
c)	The conditional	probabi	lity mas	s funct	tion P_{XY}	V(X =	x/Y =	y) =	K2	CO1
d)	If X and Y are t	wo indep	pendent	randoi	m varia	bles, t	then $E(\lambda$	<i>YY</i>) =	K2	CO1
e)	A discrete varia	ble can t	ake a		nun	nber o	f values	within its range.	K2	CO1
4.	Match the follo	owing							(5 x 1	= 5)
a)	Mutually indep	endent			$a^2V(2)$	K)			K2	CO1
b)	Priori Probabili	ty			Proba	bility	mass fu	nction	K2	CO1
c)	Discrete Rando	m Variat	ole		Lapla	ce			K2	CO1
d)	V(aX)				Binor	nial d	istributi	on	K2	CO1
e)	'n' trials				P(A∩	B∩C)	=P(A)P	(B)P(C)	K2	CO1
Ans	wer any TWO	of the fol	lowing	questi	SEC	TION	N B		(2 x 10 =	= 20)
5.	A problem in S	tatistics	is given	to 3 st	tudents	X, Y	and Z, v	whose chance of	K3	CO2
	solving it are 1	/2, 3/4 ar	nd 1/4 re	especti	vely. W	/hat is	the pro	bability that the		
	problem will b	e solved	if all of	them t	ry inde	pende	ntly.			
6.	Define distribu	tion func	tion. W	hat are	e the pro	opertie	es of a d	istribution function?	K3	CO2
7.	Define the exp	ectation of	of a ran	dom va	ariable	and di	scuss its	properties.	K3	CO2
8.	If a discrete rar	idom var	iable po	ossesse	s the fc	ollowi	ng proba	bility distribution	K3	CO2
	(X=x) 3	2	1	0	-1	-2	-3]		
	P(X=x) 0.1	0.2	3k	k	2k	0	0.1	1		
	i) Cal	culate the	e value	of k.	1	1		_		
	ii) Fine	l E(X) ar	nd V(X)).						
					SEC	TION	N C			
Ans	wer any TWO	of the fol	lowing	questi	ions.				(2 x 10 =	= 20)
9.	(i) State and Pr	ove the r	nultipli	cation	theoren	n on p	robabili	ty.	K4	CO3
	(ii) If A, B and	C are ra	andom e	events	and if .	A, B a	and C ar	e pairwise independent		
	and A is inde	pendent	of (BU	UC), tl	hen pro	ove th	nat A, H	3 and C are mutually		
	independent.									
10.	(i) Explain con	ditional p	probabi	lity.					K4	CO3

	(ii) One shot is fired from each of the 3 guns. G1, G2, G3 denote the event wh	ere	
	the target is hit by the guns G1, G2, G3 respectively. If P(G1)=0.5, P(G2)=0.5	.6,	
	P(G3)=0.8. Find the probability that, i) exactly one hit is registered ii) at least t	wo	
	hits are registered.		
11.	Two dice are thrown. Let A be the event that the sum of the points on the faces	is K	(4 CO
	odd, and B be the event of at least one being face '1'. Find the probabilities of t	he	
	events a) $(\overline{A} U\overline{B})$ b) $(\overline{A \cap B})$ c) (\overline{AUB}) d) $(\overline{A} \cap \overline{B})$		
12.	Derive the mean and variance of Bernoulli distribution.	K	(4 CO
	SECTION D		
Ans	wer any ONE of the following questions.	(1 x	20 = 20)
13.	In a railway reservation office, 2 clerks are engaged in checking reservation	K5	CO4
	forms. On an average, the first clerk checks 55% of the forms, while the		
	second clerk checks the remaining. The first clerk has an error rate of 0.03		
	and that of the second clerk is 0.02. A reservation form is selected at random		
	from the total number of forms checked during a day and is discovered to		
	have an error. Find the probability that (i) it was checked by the first clerk		
	(ii) it was checked by the second clerk.		
14.	For the following bivariate probability distribution of X and Y, find (i)	K5	CO4
	$P(X \le 1, Y = 2)$ (ii) $P(X \le 1)$ (iii) $P(Y \le 3)$ (iv) $P(X < 3, Y \le 4)$.		
	XY		
	1 2 3 4 5 6		
	$0 0 0 \underline{1} \underline{2} \underline{2} \underline{3}$		
	$\begin{vmatrix} 1 \\ 1 \\ 16 \end{vmatrix} = \frac{1}{16} \begin{vmatrix} 1 \\ 16 \\ 8 \end{vmatrix} = \frac{1}{8} \begin{vmatrix} 1 \\ 8 \\ 8 \\ 8 \end{vmatrix} = \frac{1}{8} \begin{vmatrix} 1 \\ 8 \\ 8 \end{vmatrix}$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$\overline{32}$ $\overline{32}$ $\overline{64}$ $\overline{64}$ $\overline{64}$		
			•
	SECTION E		
	wer any ONE of the following questions.	($1 \ge 20 = 2$
Ans		K6	CO5
Ans 15.	Derive the Moment Generating Function of binomial distribution.		
Ans 15. 16.	Define a Poisson random variable. Also, derive the mean and variance of the	K6	CO5