LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER - NOVEMBER 2022

UST 1502 - PROBABILITY AND DISCRETE DISTRIBUTIONS

Date: 03-12-2022
Time: 01:00 PM - 04:00 PM

Max. : 100 Marks

SECTION A

Define the following.

1.	Answer the following definitions	($5 \times 1=5$)	
a)	Axiomatic probability.	K1	CO1
b)	Multiplicative law of probability.	K1	CO1
c)	Joint probability mass function.	K1	CO1
d)	Covariance.	K1	CO1
e)	Binomial random variable.	K1	CO1
2.	Answer the following MCQ	($5 \times 1=5$)	
a)	If A and B are two events, the probability of occurrence of either A or B is given as \qquad a. $\quad \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$ b. $\quad \mathrm{P}(\mathrm{A} U \mathrm{~B})$ c. $\quad \mathrm{P}(\mathrm{A} \cap \mathrm{C})$ d. $\quad \mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$	K1	CO1
b)	Given that $\mathrm{P}(\mathrm{A})=1 / 3, \mathrm{P}(\mathrm{B})=3 / 4$ and $\mathrm{P}(\mathrm{AUB})=11 / 12, \mathrm{P}(\mathrm{B} \mid \mathrm{A})$ is \qquad a. $\frac{1}{6}$ b. $\frac{4}{9}$ c. $\frac{1}{2}$ d. None of the above	K1	CO1
c)	Which is false regarding the distribution function? a. $\quad F(-\infty)=1$ b. $\quad F(-\infty)=0$ c. $\quad F(\infty)=1$ d. $\quad X<Y \Rightarrow F(x)<F(y)$	K1	CO1
d)	If X and Y are two random variables, then $\operatorname{Cov}[(\mathrm{aX}+\mathrm{b}),(\mathrm{cY}+\mathrm{d})]$ is a. $\operatorname{Cov}(X, Y)$ b. $\quad a b c d \operatorname{Cov}(X, Y)$ c. $\quad \operatorname{ac} \operatorname{Cov}(X, Y)$ d. $\quad b c \operatorname{Cov}(X, Y)$	K1	CO1
e)	Name the distribution in which the mean is equal to the variance. a. Binomial b. Bernoulli c. Poisson d. Geometric	K1	CO1

3.	Fill in the blanks.	($5 \times 1=5$)	
a)	An event consisting of only one outcome is _- .	K2	CO1
b)	If two events A and B are disjoint, then $P(A U B)=$	K2	CO 1
c)	The conditional probability mass function $P_{X Y}(X=x / Y=y)=$	K2	CO 1
d)	If X and Y are two independent random variables, then $E(X Y)=$	K2	CO1
e)	A discrete variable can take a _ number of values within its range.	K2	CO1
4.	Match the following	($5 \times 1=5$)	
a)	Mutually independent $a^{2} V(X)$	K2	CO 1
b)	Priori Probability Probability mass function	K2	CO1
c)	Discrete Random Variable Laplace	K2	CO1
d)	$\mathrm{V}(\mathrm{aX}) \quad$ Binomial distribution	K2	CO1
e)	' n ' trials $\quad \mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{C})$	K2	CO1

SECTION B

SECTION C

Answer any TWO of the following questions.

($\mathbf{2} \times 10=20$)
9.
(i) State and Prove the multiplication theorem on probability.

K 4	CO 3
K 4	CO 3

	(ii) One shot is fired from each of the 3 guns. G1, G2, G3 denote the event where the target is hit by the guns $\mathrm{G} 1, \mathrm{G} 2$, G 3 respectively. If $\mathrm{P}(\mathrm{G} 1)=0.5, \mathrm{P}(\mathrm{G} 2)=0.6$, $P(G 3)=0.8$. Find the probability that, i) exactly one hit is registered ii) at least two hits are registered.									
11.	Two dice are thrown. Let A be the event that the sum of the points on the faces is odd, and B be the event of at least one being face ' 1 '. Find the probabilities of the events a) $(\bar{A} U \bar{B})$ b) $(\overline{A \cap B})$ c) $(\overline{A U B})$ d) $(\bar{A} \cap \bar{B})$								K4	CO3
12.	Derive the mean and variance of Bernoulli distribution.								K4	CO3
SECTION D										
Answer any ONE of the following questions.								$(1 \times 20=20)$		
13.	In a railway reservation office, 2 clerks are engaged in checking reservation forms. On an average, the first clerk checks 55% of the forms, while the second clerk checks the remaining. The first clerk has an error rate of 0.03 and that of the second clerk is 0.02 . A reservation form is selected at random from the total number of forms checked during a day and is discovered to have an error. Find the probability that (i) it was checked by the first clerk (ii) it was checked by the second clerk.							K5	CO 4	
14.	For the following bivariate probability distribution of X and Y , find (i) $P(X \leq 1, Y=2)$ (ii) $P(X \leq 1)$ (iii) $P(Y \leq 3)$ (iv) $P(X<3, Y \leq 4)$.							K5		CO4
	$\begin{gathered} P(X \leq 1, Y=2) \\ \hline \mathbf{X} \\ \hline \mathbf{X}) \end{gathered}$									
		1	2	3	4	5	6			
	0	0	0	$\frac{1}{32}$	$\frac{2}{32}$	$\frac{2}{32}$	$\frac{3}{32}$			
	1	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$			
	$\square 2$	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{64}$	$\frac{1}{64}$		$\frac{2}{64}$			
SECTION E										
Answer any ONE of the following questions.								$(1 \times 20=20)$		
15.	Derive the Moment Generating Function of binomial distribution.							K6	CO5	
16.	Define a Poisson random variable. Also, derive the mean and variance of the Poisson distribution.							K6	CO5	

