LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS

SECOND SEMESTER - NOVEMBER 2022
UST 2501 - CONTINUOUS DISTRIBUTIONS

Date: 29-11-2022
Time: 09:00 AM - 12:00 NOON
Max. : 100 Marks

PART - A	
Q. No	Answer ALL the questions (10 X 2 = 20)
1	Define joint density function.
2	State the condition under which gamma distribution tends to normal distribution.
3	If X is uniformly distributed with mean 1 and variance $4 / 3$, find $P(X<0)$.
4	What is meant by stochastic independence?
5	State additive property of gamma distribution.
6	Let X be a random variable, then $f(x)=\left\{\begin{array}{ll}k e^{-2 x} ; & x \geq 0 \\ 0 & ; \\ \text { elsewhere }\end{array}\right.$ to be density function. Find the value of k \qquad .
7	State any two applications of chi-square distribution.
8	Differentiate between normal and standard normal distribution.
9	Write the mean and variance of t-distribution.
10	Define order statistics.
PART - B	
Answer any FIVE questions (5 X 8 = 40)	
11	A r.v X is distributed at random between the values 0 and 4 and its p .d.f is given by: $f(x, y)=k x^{3}(4-x)^{2}$. Calculate (i) the value of k (ii) mean and variance (iii) standard deviation.
12	(i) Explain the procedures for generating random numbers in uniform distribution. (ii) Calculate a student randomly draws the following four uniform $(0,1)$ numbers are $0.3,0.5,0.6$, 0.8 . Use the four uniform $(0,1)$ numbers to generate three random numbers that follow an uniform distribution with parameters $\mathrm{a}=40$ and $\mathrm{b}=50$.
13	If the random variables X_{1} and X_{2} are independent and follow chi-square distribution with n d.f., show that $\sqrt{n}\left(X_{1}-X_{2}\right) / 2 \sqrt{X_{1} X_{2}}$ is distributed as Student's t with n d.f., independently of $X_{1}+X_{2}$
14	Prove that a limiting form of binomial distribution tends to normal distribution.
15	In an examination it is laid down that a student passes if he secures 30 percent or more marks. He is placed in the first, second or third division according as he secures 60% or more marks, between 45% and 60% marks and marks between 30% and 45% respectively. He gets distinction in case he secures 80% or more marks. It is noticed from the result that 10% of the students failed in the examination, whereas 5% of them obtained distinction. Calculate the percentage of students placed in the second division.
16	Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a normal population with mean μ and variance σ^{2}.

Then prove that $\sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}}{\sigma}\right)^{2}$ is a χ^{2} variate with (n-1) d.f.
Derive the m.g.f of gamma distribution and hence find its mean and variance.
Explain the joint p.d.f $\mathrm{k}^{\text {th }}$ order statistics.

PART - C

Answer any TWO questions

19 Two random variables X and Y have the following joint probability density function:
$f(x, y)=\left\{\begin{array}{cc}(2-x-y) ; & 0 \leq x \leq 1 ; 0 \leq y \leq 1 \\ 0 ; & \text { elsewhere }\end{array}\right.$.
Compute (i) Marginal density functions of X and Y , (ii) Conditional density functions of X given $\mathrm{Y}=\mathrm{y}$ and Y given $\mathrm{X}=\mathrm{x}$ (iii) $\mathrm{E}(\mathrm{X})$ and $\mathrm{E}(\mathrm{Y})($ (iv) $\operatorname{Var}(\mathrm{X})$ and $\operatorname{Var}(\mathrm{Y})(\mathrm{v})$ Covariance between X and Y .
State and prove central limit theorem.
(i).Derive the moments of beta distribution of second kind and hence find its mean and variance.
(ii). Prove that exponential distribution has a lack of memory property.
(10+10)
Derive the moments of t -distribution and hence find its β_{1} and β_{2}

