LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS
 THIRD SEMESTER - NOVEMBER 2022
 UST 3502 - MATRIX AND LINEAR ALGEBRA

Date: 03-12-2022
Time: 09:00 AM - 12:00 NOON
Max. : 100 Marks

SECTION 4			
Answer ALL the Questions			
1.	Define the following	$(5 \times 1=5)$	
a)	Symmetric and Skew-symmetric matrix	K1	CO1
b)	Addition of matrices	K1	CO1
c)	Subspace of a vector space	K1	CO1
d)	Characteristic equation	K1	CO1
e)	Positive definite quadratic form	K1	CO1
2.	Fill in the blanks		$5 \times 1=5)$
a)	A matrix \mathbf{A} such that $\mathbf{A}^{2}=\mathbf{A}$ is called	K1	CO1
b)	If two rows (or two columns) of a matrix are identical, the value of the determinate is \qquad	K1	CO1
c)	Any infinite set of vectors of V is linearly independent if its every finite subset is linearly	K1	CO1
d)	The characteristic roots of a real symmetric matrix are	K1	CO1
e)	A real symmetric matrix A is said to be positive definite if the quadratic form $\mathrm{X}^{\mathrm{T}} \mathrm{AX}$ is \qquad	K1	CO1
3.	True or False	$(5 \times 1=5)$	
a)	Any $1 \times n$ matrix which has only one row and n columns is called a column vector.	K2	CO1
b)	If all the elements of a row (or a column) of a matrix are zero, the value of the determinant is non zero.	K2	CO1
c)	The set $W=\{(a, 0, b): a, b \in R\}$ is a subspace of $R^{3}(R)$.	K2	CO 1
d)	The characteristic roots of an orthogonal matrix are of unit modulus.	K2	CO1
e)	A real symmetric matrix is positive definite if and only if all its eigen values are positive.	K2	CO1
4.	Match the following		($\times 1=5$)
a)	$\sum_{i=1}^{n} a_{i i}$	K2	CO1
b)	The method of solving n equations in n unknowns	K2	CO1
c)	The dimension of a vector space $\mathrm{R}^{3}(\mathrm{R})$ is is.aw.	K2	CO1
d)	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}$	K2	CO1
e)	$\left(A^{\theta}\right)^{\theta}$ Cramer's rule	K2	CO1
SECTION B			
Answer any TWO of the following questions		$(2 \times 10=20)$	
5.	Evaluate $\Delta=\left\|\begin{array}{lll}a^{2} & a^{2}-(b-c)^{2} & b c \\ b^{2} & b^{2}-(c-a)^{2} & c a \\ c^{2} & c^{2}-(a-b)^{2} & a b\end{array}\right\|$.	K3	CO 2
6.	Prove that the equations $x+y+z=-3,3 x+y-2 z=-2,2 x+4 y+7 z=7$ are not	K3	CO 2

	consistent.		
7.	Show that, if A be any n-rowed square matrix, then $(\operatorname{Adj} A) A=A(\operatorname{Adj} A)=$ $\|A\| I_{n}$, where I_{n} is the n-rowed unit matrix.	K3	CO 2
8.	Explain the elementary properties of a vector space.	K3	CO 2
SECTION C			
Answer any TWO of the following questions		$(2 \times 10=20)$	
9.	Explain the properties of matrix multiplication.	K4	CO 3
10.	Reduce the matrix $A=\left[\begin{array}{cccc}1 & 2 & 1 & 0 \\ -2 & 4 & 3 & 0 \\ 1 & 0 & 2 & -8\end{array}\right]$ to canonical form.	K4	CO3
11.	Show that the set $\{(1,2,1,0),(3,-4,5,6),(2,-1,3,3),(-2,6,-4,-6)\}$ of $V_{4}(R)$ is linearly dependent.	K4	CO3
12.	Determine a non-singular matrix P such that $\mathrm{P}^{\mathrm{T}} \mathrm{AP}$ is a diagonal matrix, where $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 3 & 0\end{array}\right]$.	K4	CO3
SECTION D			
Answer any ONE of the following question		$(1 \times 20=20)$	
13.	Write down in matrix form the system of linear equations $2 x-y+3 z=9$, $x+y+z=6, x-y+z=2$ and find A^{-1} and hence solve the given equations by using inverse of a matrix.	K5	CO 4
14.	(i) Determine the rank of the following matrix $A=\left[\begin{array}{cccc}-2 & -1 & 3 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5 \\ 2 & 5 & 11 & 6\end{array}\right]$ (ii) Write the polynomial $f(x)=x^{2}+4 x-3$ over R as a linear combination of the polynomials $f_{1}(x)=x^{2}-2 x+5, f_{2}(x)=2 x^{2}-3 x$ and $f_{3}(x)=x+3$.	K5	CO 4
SECTION E			
Answer any ONE of the following question		$(1 \times 20=20)$	
15.	Reduce the following quadratic form to canonical form and find its rank and signature $6 x_{1}^{2}+3 x_{2}^{2}+14 x_{3}^{2}+4 x_{2} x_{3}+18 x_{3} x_{1}+4 x_{1} x_{2}$.	K6	CO 5
16.	Cayley-Hamilton theorem for this matrix. (ii) Justify that the matrix $\left[\begin{array}{cc}\frac{1+i}{2} & \frac{-1+i}{2} \\ \frac{1+i}{2} & \frac{1-i}{2}\end{array}\right]$ is unitary.	K6	CO 5

