LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **STATISTICS**

FOURTH SEMESTER – NOVEMBER 2022

UST 4501 – ESTIMATION THEORY

Date: 26-11-2022 Dept. No. Time: 09:00 AM - 12:00 NOON

SECTION – A

Answer ALL the Questions

- 1. What is the difference between Parameter and Statistic?
- 2. Write the four properties of an estimator.
- 3. Define Sufficient Statistic.
- 4. State the use of Lehmann-Scheffe Theorem in Estimation Theory.
- 5. Suggest an Moment estimator of Poisson Distribution with the parameter λ .
- 6. Describe the Method of Modified Minimum Chi-square estimation.
- 7. State any two properties of UMVUE.
- 8. State the 95% confidence interval for μ , when a random sample of size 'n' is drawn from N(μ ,1).
- 9. Define loss function.
- 10. What do you understand by Prior Distribution?

SECTION – B

Answer Any FIVE from the following

 $5\times8=40$

Max.: 100 Marks

 $10 \times 2 = 20$

- 11. State and prove a sufficient condition for an estimator to be consistent.
- 12. Derive a sufficient statistic of λ in a Poisson distribution, based on a random sample of size 'n'.
- 13. Derive the Cramer-Rao Lower Bound for estimating μ in N(μ , 1), and obtain minimum variance bound unbiased estimator for μ .
- 14. Let $X_1, X_2, ..., X_n$ be a random sample from a Bernoulli distribution:

$$f(x,\theta) = \begin{cases} \theta^{x}(1-\theta)^{1-x} ; x = 0, 1\\ 0 & \text{otherwise} \end{cases}$$

Show that $\sum_{i=1}^{n} X_{i}$ is a complete sufficient statistics for θ .

- 15. Give an example to show that Maximum Likelihood Estimator need not be unique.
- 16. Find the moment estimator for the estimation of μ and σ^2 based on a random sample from N (μ , σ^2).
- 17. Show that the posterior mean is the Bayes estimator with respect to squared error loss.
- 18. Obtain $100(1 \alpha)$ % confidence interval for the difference of means of two normal populations with common unknown variance.

SECTION – C Answer any TWO from the following	$20 \times 2 = 40$
19. a) Show that the family of Poisson distribution $\{P(\lambda), \lambda > 0\}$ is complete.	
b) State and Prove Cramer-Rao Inequality.	(10+10)
20. a) State and prove Rao –Blackwell theorem. b) Derive the MLE of the parameter θ based on a random sample from U[θ –	(10+10) 1, θ + 1].
21. a) State and prove Lehmann-Scheffe theorem.	
b) State and prove factorization theorem.	(10+10)
22. a) Obtain 100 $(1-\alpha)$ % asymptotic confidence interval for the parameter p of t distribution.	the Bernoulli

b) Let X_1 , X_2 ..., X_n be a random sample from Bernoulli distribution B(1, θ). Obtain the Bayes estimator for θ by taking a suitable prior. (10+10)

aaaaaaa