LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **STATISTICS**

SIXTH SEMESTER – NOVEMBER 2022

UST 6502 – OPERATIONS RESEARCH

Answer ALL questions.

SECTION - A

(10 x 2 = 20 marks)

 $(5 \times 8 = 40 \text{ marks})$

- 1. What is an 'Artificial Variable' and why is it necessary to introduce it?
- 2. Define Slack and Surplus variables.
- 3. In an LPP with some 'unrestricted variables', what changes are made in order to ensure nonnegativity requirements?
- 4. Define 'primal problem' when an LPP is written in 'symmetrical' primal-dual form.
- 5. Define a LOOP in Transportation Table and give an example.
- 6. What is meant by 'unbalanced transportation problem'?
- 7. Explain 'assignment problem' with an example.
- 8. Write the formulae for finding p_1 , p_2 , q_1 , q_2 , and ν for 2 x 2 games without saddle points.
- 9. Find the minimax and maximin values for the following payoff matrix:

$$\begin{bmatrix} 1 & 3 & 6 \\ 2 & 1 & 3 \\ 6 & 2 & 1 \end{bmatrix}.$$

10. Define a Critical Path, stating the conditions for a critical activity (i, j).

SECTION - B

Answer any FIVE questions.

- 11. A company sells two different products A and B. The company makes a profit of Rs.40 and Rs.30 per unit on products A and B respectively. The two products are produced in a common production process and are sold in two different markets. The production process has a capacity of 30,000 man hours. It takes three hours to produce one unit of A and one hour to produce one unit of B. The market has been surveyed, and the company officials feel that the maximum number of units of A that can be sold is 8,000 and the maximum of B is 12,000 units. Formulate this problem as an L.P. P.
- 12. Show that the following LPP has alternative optima:

Maximize $z = 2x_1 + 4x_2$ subject to the constraints:

 $x_1 + 2x_2 \le 5$, $x_1 + x_2 \le 4$; and $x_1, x_2 \ge 0$.

13. Find all the basic solutions to the system of linear equations:

$$x_1 + 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + 5x_3 = 5.$$

Are the solutions degenerate?

- 14. Discuss the relationship between primal LPP and its dual LPP.
- 15. Verify that the dual of dual is primal for the following L.P.P.:

Maximize $z = 8x_1 + 3x_2$ subject to the constraints:

16. State a procedure of drawing minimum number of lines to cover all the zeroes (0's) of a reduced matrix in Assignment Problem.

 17. Construct the network diagram comprising activities A, B,, H and I such that the following constraints are satisfied: A < B; B < E, J; C < G; D < C, F, A; E, J < I; F < H; G < B; H < B. The notation X < Y means that the activity X must be finished before Y can begin. 18. Solve graphically the game whose payoff matrix is [2 3 11] [7 5 2] 								
SECTION – C								
Answer any TWO questions.						(2 x 20 = 40 marks)		
 19(a) Use Big-M method to solve the following L.P.P.: Maximize z = 3x₁ + 2x₂ + 3x₃ subject to the constraints: 2x₁ + x₂ + x₃ ≤ 2, 3x₁ + 4x₂ + 2x₃ ≥ 8, x₁, x₂, x₃ ≥ 0. (10) (b) Use two-phase simplex method to maximize z = 3x₁ + 2x₂ subject to the constraints: 2x₁ + x₂ ≤ 2, 3x₁ + 4x₂ ≥ 12, x₁, x₂ ≥ 0. (10) 20. Determine an initial feasible solution to the following transportation problem using the north west corner rule. Also determine the optimum solution by MODI method. 								
	Destination							
		D 000000			Availability	Availability		
 O ₁								
O_1 O_2	8	4 9 3	2	5 7	16			
O_3	4	3	6	2	5			
Requirement	6	10	15	4	35			
Activity A B C D E F G	ActivityPreceding ActivitiesA–B–C–DA, BEA, BFC, D, E				nt data are given l vity Duration (Da 4 7 6 5 7 6 5 5	<u>ys)</u> 		
Draw the network. Find the Critical Path and the project completion time. (20) 22. A department has four subordinates and four tasks are to be performed. The subordinates differ in efficiency and the tasks differ in their difficulties. The estimate of time (in man-hours) each man would take to perform each task is given by								
1 2 Subordinate 3 4 How should the tasks	a 18 13 38 19 5 be allot	19 1 26 2	$\begin{array}{ccc} 7 & 11 \\ 4 & 26 \\ 8 & 15 \\ 4 & 10 \end{array}$		the total man-ho	urs? (20)		